<u>Future High Energy</u> <u>Electron - Hadron Scattering:</u> <u>The LHeC Project</u>

Paul Newman Birmingham University QMUL seminar, 28 Nov 2014 • Lepton-hadron collider based on the high lumi LHC

- Can we add ep and eA collisions to the existing LHC pp, AA and pA programme?
- A brief history of ep Physics
- How to build an ep Collider based on the LHC
- Detector considerations
- Physics motivation
- Outlook

Electron Scattering Experiments

"It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle."

[Ernest Rutherford, Royal Society, London, (as PRS) 30 Nov 1927]

<u>1950s</u> Hoffstadter

First observation of finite proton size using 2 MeV e beam

SLAC 1969: Electron Energies 20 GeV

Proposal:

"A general survey of the basic cross sections which will be useful for future proposals"

First Observation Of Proton Structure

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS

20 October 1969

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center,[†] Stanford, California 94305 (Received 22 August 1969)

DESY, Hamburg

HERA (1992-2007)

... the only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

Equivalent to a 50 TeV beam on a fixed target proton ~2500 times more than SLAC!

Around 500 pb⁻¹ per experiment

DIS and HERA

Q²: exchanged boson resolving power

x: fractional momentum of struck quark

HERA Proton parton densities in x range well matched to LHC rapidity plateau ... BUT...

- Insufficient lumi for high x
- Lack of Q² lever-arm for low x gluon
- Assumptions on quark flavour decomposition
- No deuterons or heavy ions

Current PDF Uncertainties at LHC

LHC 8 TeV - Ratio to NNPDF2.3 NNLO - $\alpha_s = 0.118$

LHC 8 TeV - Ratio to NNPDF2.3 NNLO - $\alpha_s = 0.118$

ep Physics Beyond HERA

- LHeC is latest and most promising idea to take lepton-hadron physics to the TeV centre of mass scale

http://cerncourier.com/cws/article/cern/57304

LHeC Conceptual Design Report (July 2012)

630 pages, summarising 5 year workshop commissioned by CERN, ECFA and NuPECC

~200 participants, 69 institutes

Additional material in subsequent updates:

"A Large Hadron Electron Collider at CERN" [arXiv:1211.4831]

"On the Relation of the LHeC and the LHC" [arXiv:1211.5102]

Journal of Physics G

Nuclear and Particle Physics

[arXiv:1206.2913]

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

9

IOP Publishing

Baseline[#] Design (Electron "Linac")

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures [CERN plans energy recovery prototype]

- ep Lumi 10³³ 10³⁴ cm⁻² s⁻¹
- \rightarrow 10 100 fb⁻¹ per year
- → 100 fb⁻¹ 1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb)

[#] Alternative designs based on electron ring and on higher energy, lower 10 luminosity, linac also exist

Machine Parameters

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [µm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ [*] _{x,y} [μm]	4	4
rms Beam divergence σ΄ _{x,y} [μrad]	80	40
Beam Current [mA]	1112	25
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

HL-LHC proton beam parameters

1000 times HERA Luminosity and 4 times cms Energy

Max Klein ICFA Beijing 10/2014

Physics Overview

LHeC Detector Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all x > 5 x 10⁻⁷ requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Detector Design Overview

- Forward / backward asymmetry reflecting beam energies
- 1º electron hits two tracker planes
- Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

15

Pixels (CPT) + strips; several technologies under discussion

Performance evaluated using LicToy 2.0

For central tracks: $\Delta p_t/p_t^2 \rightarrow 6 \ 10^{-4} \ GeV^{-1}$ 10µm impact param resolution

Calorimeter Overview

Current design based on (experience with) ATLAS (and H1), re-using existing technologies

- Liquid Argon EM calo, possibly
 accordion geometry (inside coil)
- Scintilating Tile HAD calorimeter (outside coil)

Systematic Precision for Simulated Data

- First generation simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

	LHeC	HERA
Lumi [cm ⁻² s ⁻¹]	10 ³³	1-5*10 ³¹
Acceptance [°]	1-179	7-177
Tracking to	0.1 mrad	0.2-1 mrad
EM calorimetry to	0.1%	0.2-0.5%
Hadronic calorimetry	0.5%	1-2%
Luminosity	0.5%	1%

- Second generation pseudo-data (with full detector simulation) in progress

PDF Constraints at LHeC

Full simulation of inclusive NC and CC DIS data, including systematics \rightarrow NLO DGLAP fit using HERA technology...

... impact at low x (kinematic range) and high x (luminosity)

... precise light quark vector, axial couplings, weak mixing angle

... full flavour decomposition

Flavour Decomposition

Precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales). Systematics at 10% level

anti-strange density [3^j]

 \rightarrow beauty as a low x observable \rightarrow s, sbar from charged current

Should we care? PDF Unc's for LHC Higgs

[Dashed regions

= scale & PDF

contributions

... tests of Standard Model in Higgs sector may become limited by knowledge of PDFs in HL-LHC era

 $\frac{\Delta\mu}{\mu}$

0.8

0.2 0.4 0.6

LHeC Impact on LHC Higgs PDF Unc'ty

... needs N³LO Higgs calculation

... needs improved α_s measurement (also @ LHeC)

c.f. experimental uncertainty of 0.25%

e.g. High Mass 2 Gluino Production

- Signature is excess @ large invariant mass
- Expected SM background (e.g. $gg \rightarrow gg$) poorly known for s-hat > 1 TeV.

- Both signal & background uncertainties driven by error on gluon density ... essentially unknown

for masses much beyond 2 TeV

Cross section similar to e⁺e⁻ linear collider

Dominant charged current process probes product of WW \rightarrow H and H \rightarrow bbbar couplings

Sensitive to anomalous couplings and (via azimuthal degree of freedom) anomalous CP structure

A Direct Higgs Study

Study of H \rightarrow bbbar in generic simulated LHC detector

- 80% lepton polarisation enhances signal by factor 1.7
- Signal/Background ~ 1-2
- With 10³⁴ luminosity,
 x10 more data
 →~5000 events,
 →~1% H→bbbar coupling

... ongoing studies of $H \rightarrow ccbar$ to follow.

HeC Higgs Group U.Klein et al

Direct Sensitivity to New Physics

• The (pp) LHC has much better discovery potential than LHeC (unless E_e increases to >~500 GeV and 10³⁴ lumi achieved)

e.g. Expected quark compositeness limits below 10⁻¹⁹ m at LHeC

... big improvement on HERA, but already beaten by LHC

• LHeC *is* competitive with LHC in cases where initial state lepton is an advantage and offers cleaner final states

Cross Sections and Rates for Heavy Flavours

Low-x Physics and Parton Saturation

Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects
 ... new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? ...
 ... gluon dynamics → confinement and hadronic mass generation

LHeC Strategy for making the target blacker

ln 1/x

LHeC delivers a 2-pronged approach:

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... density ~ $A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x]

... Reaching saturated region in both ep & eA according to current models

In A

[fixed Q]

DENSE REGION

eA

Establishing and Characterising Saturation With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_D

- LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
- Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Exclusive / Diffractive Channels and Saturation

v* vv

р

e

mis

V

X (M_x)

р

р

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

e.g. J/ ψ Photoproduction

• Significant non-linear effects expected in LHeC kinematic range.

 Data shown are extrapolations of HERA power law fit for E_e = 150 GeV... → Satⁿ smoking gun?

LHeC as an Electron-ion Collider

Four orders of magnitude increase in kinematic range over previous DIS experiments.

Current knowledge for x <~ 10⁻² almost zero.

→LHeC revolutionises our view of partonic structure of nuclei.

 \rightarrow Study interactions of densely packed, but weakly coupled, partons

 \rightarrow Ultra-clean probe of passage of `struck' partons through cold nuclear matter

Future Circular Collider (FCC) study ; goals: CDR and cost review for the next European Strategy Update (2018)

International collaboration :

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
 ~16 T ⇒ 100 TeV in 100 km
 ~20 T ⇒ 100 TeV in 80 km
- including *HE-LHC* option: 16-20 T in LHC tunnel
- e⁺e⁻ collider (FCCee/TLEP) as potential intermediate step
- p-e (FCC-he) option
- 100 km infrastructure in Geneva area M. Benedikt

F.Zimmermann, IPAC14, June 14, Dresden

The Distant Future: ep at a CERN Future Circular Collider

First studies with current electron design, ($E_e = 60 \text{ GeV}$) enhanced with crab cavities, and $E_p=50 \text{ TeV}$. Detector, scaled by up to ln(50/7) ~ 2

 $\rightarrow \int s_{ep} = 3.5 \text{ TeV}$, Lumi = few. 10³⁴ cm⁻²s⁻¹

Summary of Higgs Yields at LHeC and FCC-he

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	$2\ 450\ 000$
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H ightarrow au^+ au^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l 2 \nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	$2\ 050$	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500

- Total FCC-he H cross section ~ 1 pb (cf lumi ~ 10³⁴ cm⁻²s⁻¹)
- H \rightarrow HH cross section ~0.5 fb within range?... Studies ongoing

First thoughts on Physics at FCC-he

- Leptoquark reach to ~ 4 TeV
- Sensitive to gluon density down to $x \sim 10^{-7}$ for $Q^2 > 1$ GeV²

 \rightarrow Studies underway, common software group with pp and ee

Status and Plans

• CDR 2012 (630 pages, summarising 5 year workshop. 200 authors from 69 institutes)

- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - Higgs discovery → closer look at what limits HL-LHC sensitivity and standalone ep possibilities
 - 3) Associated technical developments (High gradient cavities, Energy recovery linacs)

• New International Advisory Committee and Coordination Group set up by CERN, with mandate to further develop LHeC, also in context of FCC.

- More, at LHeC web http://lhec.web.cern.ch and ...
- LHeC Study Group (CDR), J Phys G39 (2012) 075001
- Klein & Schopper, CERN Courier, June 2014
- Newman & Stasto, Nature Phys 9 (2013) 448
- Bruening & Klein, Mod Phys Lett A28 (2013) 1130011

... with thanks to many experimentalist, theorist & accelerator science colleagues, especially Nestor Armesto, Max Klein, Uta Klein and Anna Stasto ...

LHeC study group ...

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸,
 O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷,
 H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, M.Kraemer⁷⁵, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri²⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²