Diffractive Processes and the LHC

Paul Newman (University of Birmingham)

MPI@LHC, Tel Aviv 16 October 2012

- → Diffraction and Multi-Parton Interactions
- \rightarrow Elastic, Total and Dissociative LHC Cross Sections
- \rightarrow Large Rapidity Gaps and hadronisation fluctuations
- \rightarrow First LHC measurements of Hard Scattering in Single Dissocⁿ
- \rightarrow Central Production

Diffraction & Multi-Parton Interactions

- Trivially, more than 1 parton in t channel

- Gap survival probabilities / absorption Must be due to multiple interactions ... but with large impact parameters

- Absorptive effects due to multiple soft exchanges in minimum bias models

- Less obviously, small (but non-zero) rapidity gaps as a complementary probe of underlying event modelling

What I won't talk about ...

MPI studies (e.g. transverse region to jets ...) within diffractively produced systems in single dissociation / central production processes

- Test our understanding of MPI with complementary (IP-p, IP-IP) initial states

- Test our understanding of diffractive production mechanism ...

- Uncorrelated 2+2 jet production: If $x_1 + x_2 \sim \xi$, gaps close to gap, probe of hard diffractive exchange

- (Maybe?) build a link MPI \rightarrow gap survival experimentally?

Diffraction, Vacuum Exchange and the Pomeron

Elastic Cross Section (TOTEM Roman Pots)

Precise t dependence of elastic ($pp \rightarrow pp$) cross section over wide range of |t|at LHC

Position of dip decreases from |t| ~ 0.6 GeV² (Tevatron) to
 0.53 GeV² (TOTEM)
 ... proton transverse size increasing with √s

\slash s dependence of t Slopes and lpha'

- B = 16.7± 0.2 GeV⁻² (D0) → 19.9±0.3 GeV⁻² (TOTEM)

... suggests α ' significantly larger than 0.25 GeV⁻² ... c.f. HERA measurements where α ' less than 0.25 GeV⁻²

Dedicated run (special optics @ $\beta^* = 90m$) \rightarrow |t| ~ 0.005 GeV²

- 10% extrapolation to t=0
- Luminosity measurement from CMS
- ρ from previous data

... one of four evaluations of σ_{tot} by TOTEM

Inferred total inelastic cross section consistent with ATLAS, CMS and ALICE min-bias measurements ...

Total Inelastic pp Cross Section (ATLAS)

• Using MBTS trigger $(2.1 < |\eta| < 3.8)$, miss only elastic (pp \rightarrow pp) and low mass diffraction (pp \rightarrow pX etc)

- Unextrapolated result below PYTHIA and PHOJET
- 5-15% extrapolation yields total inelastic cross section
- Extrapolation
 includes large
 uncertainty on low
 ξ dissociation

Total Inelastic pp Cross Section (ALICE)

New result from ALICE [with corrected Tel Aviv curve hot off the press]

ALICE agrees well with Totem. Other direct measurements with low ξ extrapolations (ATLAS, CMS) have central values lieing somewhat lower.

... low mass diffraction has large uncertainties!

Independent results soon
 from ALFA @ ATLAS

Inelastic Diffraction

Uncertainties in pre-LHC Predictions

Single dissociation

 $\sigma = 14mb$ (PYTHIA8) $\sigma = 10mb$ (PHOJET)

Double dissociation

 $\sigma = 9mb$ (PYTHIA8) σ = 4mb (PHOJET)

sqrt(s) = 19.6 GeVbb→bX 205 GeV/c 100 50 TOTAL 20d (<u>1</u>2) d (<u>1</u>2) 10 5 0.14 0.12 0.04 0.10 0.02 0.06 0.08

M²/s

(g m)

Parameterisations based on old low energy data, particularly poor for DD

CMS: First Direct LHC Dissocⁿ Observation

ALICE: Total SD and DD Cross Sections

"Standard Model" of Soft Diffraction

р

р

р

At fixed s:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\xi\,\mathrm{d}t} \propto \left(\frac{1}{\xi}\right)^{2\alpha(t)-\alpha(0)} e^{bt} \\ \left[\alpha(t) = \alpha(0) + \alpha'\,t\right]$$

i.e
$$\frac{d\sigma}{d\xi} \propto \frac{1}{\xi}$$
 to first approximation

Deviations from this behaviour sensitive to $\alpha_{IP}(t)$

... also sensitive to absorptive corrections \rightarrow multiple soft exchanges in different configurations)

Rapidity Gap approach

ATLAS: Differential gap cross-sections

- Cross sections measured from first $\sqrt{s} = 7$ TeV LHC run
- Differential in rapidity gap size $\Delta\eta^{\text{F}}$
- $\Delta \eta^{F}$ extends from η = ±4.9 to first particle with $p_{t} > p_{t}^{cut}$

 $200 \text{ MeV} < p_t^{cut} < 800 \text{ MeV}$

 $0 < \Delta \eta^{F} < 8$

Corrected for experimental effects to level of stable hadrons

ATLAS Differential Gap Cross Section

- Precision between ~8% (large gaps) and ~20% ($\Delta\eta^{\text{F}}$ ~ 1.5)

- Small gaps sensitive to hadronisation fluctuations / MPI ... huge uncertainties ...

- Large gaps measure x-sec for SD [+ DD with M_Y <~ 7 GeV]

Small Gaps and Hadronisation

- Big variation between MCs in small non-zero gap production via ND \rightarrow fluctuations / UE - PYTHIA8 best at small gaps - PHOJET > 50% high at $\Delta \eta^{F} \sim 1.5$ - See also higher p_T cut data

SHRiMPS (MB in SHERPA): sneak preview

 $= \pm 4.9, p_T > 400 \text{ MeV}$

MC (tune-unitweights-

5

7

 $\Delta \eta^F$

Rapidity Gap Cross Section @7 TeV

These distributions are complementary to AC (tune-weights 1-000-0 particle spectra / correlations and dedicated underlying event measurements and should be described by any model that aims to MC (tune-weights_1-000-0 MC (tune-unitweights-oo provide a `complete' minimum bias description

> **Impressive** (but still not perfect) description!

Large Gaps and Diffractive Dynamics

-Diffractive plateau with ~ 1 mb per unit of gap size for $\Delta \eta^F$ > 3 broadly described by models - PYTHIA high (DD much larger than in PHOJET)

- PHOJET low at high $\Delta\eta^{\text{F}}$

Large Gaps and Diffractive Dynamics

Default PHOJET and PYTHIA models have $\alpha_{IP}(0) = 1$ Donnachie-Landshoff flux has $\alpha_{IP}(0) = 1.085$ Data exhibit slope in between these models at large $\Delta \eta^{F}$ [No absorptive corrections in either case]

α (0) extraction & a crude PYTHIA8 tuning

α(0) uncertainty
heavily dominated
by model
dependence
of hadronisation

Only other input to extrapolation is overall fraction of diffractive events from total inelastic cross section paper.

 \rightarrow describes small gaps well, but not transition between non-diffractive and diffractive regions

... simultaneous Durham (KMR) description of ATLAS gaps data and elastic cross section data from ISR to Totem based on a single pomeron in a 3-channel eikonal model, with significant absorptive corrections in gaps / dissociation case

DPDFs dominated by a gluon density which extends to large z

0.4

0.6

0.8

1 z **DIS data**

0.2

0

0

0

0.2

0.4

0.6

0.8

z¹

1st Hard diffraction data from LHC ...

2) Dijets with ξ reconstructed from full observed final state

$$\widetilde{\xi}^{\pm} = \frac{\sum \left(E^i \pm p_z^i\right)}{\sqrt{s}} \simeq \frac{M_X^2}{s}$$

W and Z events with gaps at CMS

After pile-up corrections, ~1% of W and Z events exhibit no activity above noise thresholds over range 3 < $\pm \eta$ < 4.9 ... interpretation complicated by non-diffractive hadronisation fluctuations ...

 $ilde{\eta}$ (= 4.9 - $\Delta\eta$) end-point of gap - starting at acceptance limit

Exploiting Gap-Lepton η Correlation

Lepton pseudorapidity with + sign if lepton in same hemisphere as gap, else - sign.

Fit to combination of PYTHIA and POMPYT hard diffraction model suggests significant (~50%) diffractive contribution

Surprisingly large?...

-Diffractive signal required at low ξ (Data > PYTHIA ND)

-Fit linear combination of PYTHIA (ND) and POMPYT / PYTHIA8-SD+DD (DPDF-based diffractive models)

 \rightarrow Best description from PYTHIA6 with POMPYT x 0.23

 \rightarrow PYTHIA8, SD/DD contribution has to be multiplied by a factor ~2.5 and still gives inferior description

Corrected Differential Cross Section

- Comparison of 1st bin v diffractive DPDF models (POMPYT, POMWIG) shows factor ~ 0.21 ± 0.07 required ... but double dissociation

included in data, but not (or less) in models

→ Gap survival probability estimate 0.12 ± 0.05 (LO)
 → Gap survival probability estimate 0.08 ± 0.04 (NLO - POWHEG)
 ... comparable to Tevatron, but different x range
 ... larger than expected?
 - PYTHIA 8 diffraction model too low by factor ~ 2
 ³⁰
 Proton tagged data will help a lot (DD, ND large gap fluct's)

Quick word on Central (Excl) Production

- First results from CMS on e^+e^- and $\mu^+\mu^-$ are consistent with QED prediction.

- No signal for $\gamma\gamma,\,\,$ jet-jet or other strongly produced central systems so far

... but watch this space ...

Summary

Precise LHC soft diffractive, elastic, total cross section data

- Broadly described by single pomeron with intercept as expected, but α_{IP} ' larger than thought?
- Simultaneous description of all data requires better understanding of absorptive corrections / shadowing.
- Low mass diffractive dissociation remains problematic

First data on diffractive hard scattering

- Suggestion of surprisingly large gap survival probability?
- Need improved understanding of hadronisation
 - fluctuations leading to large gaps in non-diff data
- Proton tagging can by-pass this issue

Future directions include MPI in diffraction, lots more hard processes including central production

32

[Thanks to O. Kepka, T. Martin, O. Villalobos-Baille, K. Zapp and many others]

Total Inelastic pp Cross Section

Optical Theorem:

$$\sigma_{TOT}^{2} = \frac{16\pi (hc)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Using luminosity from CMS:
$$\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$$

ρ from COMPETE fit: $ρ = 0.14^{+0.01}_{-0.08}$

$$\sigma_{TOT} = \sqrt{19.20 \,\mathrm{mb}\,\mathrm{GeV}^2 \cdot \frac{d\sigma_{EL}}{dt}}_{t=0}$$

Generalised Optical Theorem

1) Factorise SD into a pomeron (IP) flux and a total p+IP

cross section

2) Similarly to total pp cross section, relate total p+IP cross section to forward elastic amplitude via optical theorem

3) Calculate SD cross sections from triple pomeron amplitudes

[similar treatment for DD]

ATLAS Acceptance

Rapidity gaps identified using full range of calorimetry ($|\eta| < 4.9$) and inner tracking detector ($|\eta| < 2.5$)

Detector is sensitive to particle production with $p_T > 200 \text{ MeV}$... Measurements defined by this requirement

Higher p_T cuts also applied to investigate dependence

ATLAS Measurement

Uses only the first ever physics run at √s = 7 TeV.

30th March 2010, from 13.24 to 16.38

7 minutes shorter than `Lord of the Rings: Return of the King'

Pile-up occurs in less than 1 event in 1000

Integrated luminosity of 7.1 μb^{-1}

Peak instantaneous luminosity of 1.1 x 10²⁷ cm⁻² s⁻¹ 🙂

Gap Finding Algorithm / Observable

Divide detector into rings of width usually $\Delta \eta = 0.2$

Decide whether there are particles with pT above threshold (usually 200 MeV) in each ring

Define $\Delta \eta^F$ = larger continuous run of empty rings extending to limit of acceptance in forward or backward direction

Increasing the pt cut defining gaps

Sensitivity to Pomeron Intercept

Extract $\alpha_{IP}(0) = 1 + \epsilon$ by optimising description by PYTHIA8 as ϵ varies in a region where ND contributions are negligible

Cluster Fragmentation: HERWIG++

- HERWIG++ with underlying event tune UE7-2 contains no explicit model of diffraction, but produces large gaps at higher than measured rate and a "bump" near $\Delta \eta^{F} = 6$

- Effect not killed by removing colour reconnection or events with zero soft or semi-hard scatters in eikonal model

SHRiMPS (MB in SHERPA): sneak preview

43

Increasing the pt cut defining gaps

As p_t^{cut} increases, data shift to larger $\Delta \eta^F$ in a manner sensitive to hadronisation fluctuations and underlying event

Switching to pt^{cut} = 400 MeV
 doesn't change qualitative
 picture

- Diffractive / non-diffractive processes barely distinguished at p_t^{cut} = 800 MeV 44

Investigating the Low $\boldsymbol{\xi}$ Extrapolations

[Inelastic cross section excluding diffractive channels with $\xi < \xi_{cut}$]

- Integrating ATLAS gap cross section up to some max $\Delta \eta^F$ (equivalently min ξ_X) and comparing with TOTEM indicates that small ξ_X region underestimated in PHOJET and PYTHIA: - 14 mb with $\xi < 10^{-5}$, compared to 6 (3) mb in PYTHIA (PHOJET)

Example of DPDFs Predicting Diffractive DIS

$$\sum_{X} E - p_z \approx 2E_p \cdot \xi_X$$

for dissociation system in +z direction ... and lost particles have $E\text{-}p_z$ ~ 0

$$\widetilde{\xi}^{+} = C \frac{\sum \left(E^{i} + p_{z}^{i}\right)}{\sqrt{s}}$$

Define for dissociation system in the -z direction (and E+pz for +z dissociation). ... well correlated with ξ at low ξ 47

Small Gaps & Hadronisation Fluctuations

in probability for hadronisation fluctuations in non-diffractive events to produce large gaps

Fig. 4 Probability for finding a rapidity gap (definition 'all') larger than $\Delta \eta$ in an inclusive QCD event for different threshold p_{\perp} . From top to bottom the thresholds are $p_{\perp,\text{cut}} = 1.0, 0.5, 0.1 \text{ GeV}$. Note that the lines for cluster and string hadronisation lie on top of each other for $p_{\perp,\text{cut}} = 1.0 \text{ GeV}$. No trigger condition was required, $\sqrt{s} = 7 \text{ TeV}$

TOTEM and the Elastic Cross Section

- With CMS, the most hermetic detector ever?
- Elastic scattering measurement using Roman pots at 220m