Diffractive Lepton-Hadron Scattering

Paul Newman Birmingham University

Cracow School of Theoretical Physics: 'Electron-Ion Collider Physics'

Mon 20 September 2021

Introduction
 Diffraction at HERA
 Diffraction at the EIC

Low x Physics: A frontier of Standard Model

... HERA data as discussed by previous lecturer ...

Final HERA Picture of Proton (HERAPDF2.0)

- ~2% precision on gluon over a wide range of x
- Gluon rises in a non-sustainable way ... does it 'saturate'?
- \rightarrow emergent phenomena at high parton density & strong coupling (including diffraction, non-linear evolution, confinement, mass ...)

Exclusive / Diffractive Channels

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to gluon density (at least for exclusives)
- 2) 2-parton correlations become accessible \rightarrow 3D imaging!
- 3) New variable t gives access to impact parameter (b) dependent amplitudes

 \rightarrow Large t (small b) probes densest packed part of proton.

'Inclusive'

р

(X_{IC}

p

Diffraction and HERA

ep collisions at $\sqrt{s} \sim 300 \text{ GeV}$ 1992-2007 ~ 0.5 fb⁻¹ per expt. e $\sqrt{\gamma^*(Q^2)}$ (B) (x_P) p p

e.g. H1 publications on diffraction (similar numbers in ZEUS):

- Inclusive diffractive cross sections:
- Diffractive final states:
- Quasi-elastic cross sections:
- Total yp cross sections / decomposition:

15 papers18 papers22 papers2 papers

Diffractive Lepton-Hadron Scattering: Basics

- HERA (and EIC) have favourable kinematics to study X system (photon dissociation)

- By varying Q², the process can be smoothly changed ... from a soft process (real photon, $Q^2 \rightarrow 0$) ... to a deep inelastic process (highly virtual photon, large Q², resolving partons and probing QCD structure)

- I will focus on cases where t is small

<u>Exclusive</u> Vector Meson Production

Experimental Selection (examples from H1 -Elastic $J/\Psi \rightarrow \mu\mu$)

- 2-prong decays give beautifully clean events.
- → Select by requiring otherwise empty detector
- → Decay muon direction is determined by $W = \int s_{\gamma p}$

Describing Vector Mesons in terms of Partons

Factorisation theorem

Dipole Models

9

step 1. γ fluctuation into
$$q \overline{q}$$
 dipole
step 2. dipole – proton interaction $A = \int dr^2 dz \Psi_{\gamma} \sigma(dip - p) \Psi_{V}$
step 3. pair recombination into VM

1. γ wave function

well known : Ψ(z, k_t) however : large |t| studies -> chiral odd contributions

3. pair recombination into VM

- VM wave function description ?
- role on $\sigma_{\!L}\,/\,\sigma_{\!T}\,$ and helicity amplitudes

- Basically known

- Limits theoretical precision

The Dipole-Proton Interaction

2. dipole – proton interaction - The interesting physics

VM production is a promising candidate to learn about the gluon distribution in hadrons and the correlations among gluons

Many models on the details of $\sigma(r)$ (see later talks)

What is the relevant scale?... r depends on Q^2 and M_v^2

$$Q_{eff}^2 = z (1-z) (Q^2 + M_v^2) \sim (Q^2 + M_v^2) / 4$$
 [MRT¹⁰.]

Vector Mesons & the Soft \rightarrow Hard Transition

Behaviour usually parameterised in Regge-theory motivated form

$$\frac{d\sigma_{el}}{dt} \sim \left(\frac{W^2}{W_0^2}\right)^{2\alpha(t)-2} e^{bt}$$

 $-\alpha(t)=\alpha(0)+\alpha't$ is the 'effective pomeron trajectory' 'Universal' description of soft physics: $\alpha(t) \sim 1.08 + 0.25t$

- e^{bt} empirically motivated - Fourier transform of spatial distribution of interaction $b = b_{dipole} + b_{proton} \rightarrow b_{proton}$ as dipole size $\rightarrow 0$

- Signatures for 'hard' behaviour include increase in $\alpha(0)$ and decrease in b 11

Photoproduction of Light v Heavy VM

- Increasing M_v leads to harder energy dependences
- $\sigma \alpha W^{\delta}$ with δ =4 α (<t>)-4
- Consistent with soft pomeron for light vector mesons
- For J/ Ψ , effective $\alpha(t) \sim 1.20 + 0.13t$
- ... c, b mass implies pQCD already valid for J/Ψ , Y at $Q^2 = 0$

Turning the Q² Handle

-J/ Ψ : W & t dependences ~ unchanged - already hard @ Q²=0

- Light vector meson behaviour evolves from soft to hard (eg ρ^0)

- Vector mesons produced from longitudinal and transverse polarised photons behave slightly differently - Fast reduction in cross section with Q² illustrates higher twist nature of process: $\sigma_L \sim 1/(Q^2+M_V^2)^{2.1}$, $\sigma_T \sim 1/(Q^2+M_V^2)^{2.9}$... reasonably well described by dipole (2 gluon) models

VM Overall Characterisation Summary

- Approximate scaling between different meson species in $(Q^2 + M_V^2)/4$

-t-slope approaches $B \sim 4-5 \text{ GeV}^{-2} \sim 0.6 \text{ fm}$... slightly smaller than EM size of proton?

 $-\,\alpha$ ' shows no significant variation with any scale.

Exclusive J/\Psi Photoproduction

Maybe the ideal place to look for gluon saturation in ep, eA ...

<u>Advantages</u>

Clean 2 lepton experimental signature

• Scale $Q^2 \sim (Q^2 + M_V^2)/4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching lowest possible x whilst in perturbative regime

Possible clear saturation signature: energy (W) dependence flattening in a manner dependent on t or in eA as A grows

Complications

- Vector meson wavefunction
- Difficulties in collinear factorization theory \rightarrow large scale uncertainties (NLO v LO convergence)

HERA Photoproduction of J/Ψ and the Gluon

- QCD models based on 2-gluon exchange describe HERA data well & suggest power to discriminate between PDFs

- Sensitivity limited by theory uncertainties

- No evidence for saturation phenomena in HERA data (all ep)

150

200

250

300 W [GeV]

Exclusive J/Ψ Data from the LHC J/Ψ Photoproduction also studied (at higher energy) in Ultraperipheral Collisions at LHC [qu] dh m fPower law fit to H1 data JMRT NLO prediction . ه^ي10² LHCb (vs= 13 TeV) Vector meson (ρ⁰, J/ψ, ψ(2S), ...) LHCb (vs= 7 TeV) ALICE W H1 ZEUS 10 Fixed target exp. p, A p, A 10^{2} 10^{3} W [GeV] 10⁻³ 10-5 10-4 (dhtp://d ALICE pPb 32.6 nb⁻¹ (5.02 TeV) CMS ALICE (PRL113 (2014) 232504) 10⁴ Power-law fit to ALICE data $\sigma_{\gamma p \rightarrow \gamma(1S)p}$ (pb) H1 JS 2009 (e-p) **ZFUS** ZEUS 1998 (e.p) LHCb pp (W+ solutions) LHCb pp (W- solutions) 1 2000 (e-p) 10³ MRT NLO STARLIGHT param NI O BEKI CGC (IP-Sat, b-CGC Models / fit to data 1.2 JMRT-LO 1. JMRT-NLO Fit CMS: 8=1.08±0.42 0.9 Fit HERA+CMS+LHCb 0.8 8=0 76±0 14 0.7 0.6 10^{2} 20 30 40 50 60 10² 2×10² 10³ 10³ Wyp (GeV) Wyp (GeV)

- No sign of deviation from simple power law behaviour (yet)
- More subtle signatures may exist in t dependences and eA/ep

Deeply Virtual Compton Scattering (ep \rightarrow e γ p)

- DVCS is the classic exclusive process to investigate hadron transverse structure and correlations via Generalised Parton Densities

... BUT ...

- HERA measurements were luminosity-limited (lower cross sections than Vector Mesons due to γ coupling)

- HERA did not have polarised proton beams

Inclusive **Diffraction in** Deep Inelastic <u>Scattering</u>

Diffractive DIS

Vector meson production is a 'higher twist' (Q² suppressed) process

There are 'leading twist' diffractive processes with same Q² dependence as the bulk DIS cross section ...

~10% of DIS events have no forward energy flow 20

Standard DIS variables ...

x = momentum fraction q/p $Q^2 = |\gamma^* 4$ -momentum squared|

Additional variables for diffraction ...

t = squared 4-momentum transfer at proton vertex

X_{IP} = fractional momentum
 loss of proton
 (momentum fraction IP/p)

 $\beta = x / x_{IP}$ (momentum fraction q / IP)

Kinematics

Most generally $ep \rightarrow eXY$...

In most cases here, Y=p, (small admixture of low mass excitations)

Signatures and Selection Methods

Scattered proton in Leading Proton Spectrometers (LPS)

Limited by statistics and p-tagging systematics

`Large Rapidity Gap' <u>(LRG)</u> adjacent to outgoing (untagged) proton

Limited by p-diss systematics

- The 2 methods have very different systematics
- LRG was the main method used at HERA
- At EIC it is more likely to be LPS (technologies improved!)

Example Roman Pots (H1 VFPS @ ~200m)

Proton Vertex Factorisation & the Effective Pomeron of Diffractive DIS

 $\alpha_{IP}(0) = 1.10 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)}$ $\alpha'_{IP} = 0.04 \pm 0.02 \text{ (exp.)} \pm 0.07 \text{ (model)} \text{ GeV}^{-2}$ $B_{IP} = 5.7 \pm 0.3 \text{ (exp.)} \pm 0.9 \text{ (model)} \text{ GeV}^{-2}$

 $\alpha_{\text{IP}}(0)$ consistent with soft IP α_{IP} ' smaller than soft IP

e.g. From H1 FPS data:

→ Dominantly soft exchange → Absorptive effects?...²⁴

Diffractive Parton Densities (DPDFs)

DPDFs extracted through fits to inclusive (& jet) data, assuming NLO/NNLO DGLAP evolution, similarly to inclusive DIS

... dominated by gluon density extending to large momentum fractions, z

- NLO DGLAP QCD fits describe data over most of phase space

- Failure of diffractive PDF fits to describe data at lowest \vec{Q}^2 ...

Testing Factorisation; eg HERA Jets & Charm

Remarkably good description of all variables in Diffractive DIS over a wide kinematic range

Charm in DIS

Dijets in DIS

28

Diffractive DIS & Dipole Models

Quality of H1 & ZEUS DPDF fits degrades at low Q² <~ 5 GeV²
 ... low Q² breakdown of pure Leading Twist DGLAP approach

... photoproduction jets as the perfect control experiment?...

Rapidity Gap Survival Probability in Diffractive Dijet Photoproduction

From double ratio:

(data/theory) (γp / DIS) = 0.51 ± 0.09

- Gap survival unexpectedly has little dependence on \mathbf{x}_{γ}
- Some inconsistencies between ZEUS and H1
 → mysteries still to be understood

m

g (x,)

g (z_⊮) औ

Rescatter

jet

jet

Diffraction and the **Electron-lon** Collider

[Examples from some early studies]

'Day 1' at EIC: Diffractive / Inclusive Ratio

- EIC 'Day 1' simulations confirm the importance of this sort of observable to disentangle saturation and shadowing increasing diff/incl ratio with A in saturation case ...

- Famous ZEUS plot ... Rather flat diffractive/inclusive ratio v x at fixed Q2, taken as evidence for saturation

Exclusive Diffraction in eA

- Separation of coherent / incoherent can be done based on ZDC
- Opportunity to image structure
- Significant saturation effects predicted in coherent case ($eA \rightarrow eVA$), visible in total cross sections, A and t dependences
- ϕ mesons may be most sensitive

Inclusive Diffraction at EIC

Lower centre of mass energy than HERA, but ...

 Fills gap in kinematic plane at large x (there are no fixed target data)
 → Sensitivity to poorly constrained structure at large momentum fraction (β or z)

- Inclusive diffaction has never been studied with nuclear or polarised targets

Inclusive Diffraction in ep at EIC: Scattered proton kinematics

 $t \approx -p_T^2$ $x_L = \frac{E'_p}{E_p} = 1 - x_{\rm IP}$

Planned EIC Roman pots provide: - Good coverage in most interesting large x_L , low |t|, diffractive region for all \sqrt{s}

- Interesting coverage at smaller x_L at large \sqrt{s} (sub-leading `Reggeon' exchanges)

Inclusive Diffraction in ep at EIC: Sensitivity to sub-leading (non-pomeron) exchange

Inclusive Diffraction in ep at EIC: Sensitivity to diffractive longitudinal structure function

- Longitudinal structure function is proportional to gluon density at lowest order.
- Measurement at same (ξ, t, β, Q^2) and varying \sqrt{s} (hence y) gives sensitivity to F_L^D (Rosenbluth plots)

$$\sigma_{\rm red}^D = F_2^D - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}^D$$

- First simulations look promising
- Precision strongly dependent on correlations between systematics at different \sqrt{s}

Inclusive Diffraction from Nuclei at EIC: Selected Simulated Data for e Au \rightarrow e X Au

- Inclusive diffraction from nuclei never previously studied
- Comparing eA / ep may reveal non-linear (satur'n) dynamics

Simulations based on different versions of FGS model \rightarrow - illustrates accessible kinematic range and ability to distinguish between (widely varying) models

Summary

HERA revolutionised our understanding of Diffraction in QCD

Exclusive (vector meson) processes ($ep \rightarrow eVp$):

- Turn-on of hard scales mapped for multiple VM species.

- $(Q^2 + M_V^2)/4$ is often a good scale choice for comparisons
- Hard VM production in principle sensitive to proton gluon

density / saturation

Inclusive process ($ep \rightarrow eXp$):

Dominant contribution can be viewed as LT DIS off 'soft' colour-singlet exchange: properties similar to the 'soft pomeron'
 Colour Singlet Exchange dominated by gluons carrying

large momentum fraction

EIC will go further with improved beamline instrumentation, much larger luminosity, ep/eA comparisons and polarisation \rightarrow 3D imaging \rightarrow High density effects ⁴⁰