Prospects for Diffraction at HERA-II

Paul Newman, Birmingham University

Hard diffraction is a major success story of HERA-I New measurements on HERA-I data keep coming (DIS02) But what does HERA-II have to offer? Where will we be by DIS07? ...

New tools with HERA-II

Since mid 2000, HERA has undergone major changes:

Focusing magnets inside H1 / ZEUS: $\rightarrow \mathcal{L} \times 3.5$

New spin rotators and polarimeters

Many components of experiments simultaneously upgraded

Several new tools for Diffraction

- Factor ~ 10 increase in statistics by end 2006
- New proton spectrometer (H1 VFPS)
- Polarised leptons
- Reduced centre of mass energy running?

Stable luminosity now achieved at H1 / ZEUS

Working towards increased currents / reduced backgrounds

<u>A factor 10 in Statistics! $\rightarrow 1 \mathrm{fb}^{-1}$ </u>

Many diffractive measurements systematically limited after HERA-I:

- $F_2^{D(3)}$ at modest Q^2
- Vector mesons at low Q^2 , |t|
- Energy flow, particle spectra, event shapes in diffraction

Many exclusive final states remain statistically limited:

- Diffractive *D**
- Exclusive dijet production (Bartels et al.)
- DVCS
- Vector mesons at large Q^2 , |t|
- Elastic Υ production

Higher statistics allow more differential measurements:

• e.g. t dependences ($F_2^{D(4)}$)

Proton Tagging

Two complementary measurement techniques used so far ...

1) Measure Hadrons Comprising X

- Ample statistics!
- Large systematics from unseen proton elastic or dissoc'?
- *t* measurements not generally possible.
- May be hard to trigger at HERA-II

2) Tag and measure Leading Proton in Dedicated Detectors

 $x_{I\!\!P} = E'/E$ if exclusive pat proton vertex.

- Provides a means of triggering.
- t, ϕ measurements possible.
- Systematics can be reduced.
- Limited stats up to now due to detector acceptance.

H1 Very Forward Proton Spectrometer

New tool for HERA-II: H1 VFPS

Roman pots at $z \sim 200$ m, Installation end 2002

2 'Roman Pot' insertions to proton beampipe, each with 2 scintillating fibre detectors

Trajectory of Scattered Protons at $x_{I\!\!P} = 0.01$

Beam optics used to give dispersion in x_{IP}

Approaches beam in horizontal plane

Acceptance extends to t = 0

Location chosen to optimise acceptance in specified region

Acceptance of VFPS

Acceptance region defined by beam optics and distance of approach of detectors to beam (3 mm for coasting beam.)

Close to 100% acceptance achievable for $|t| \lesssim 0.2 \, {
m GeV^2}$, $0.01 \lesssim x_{I\!\!P} \lesssim 0.02$

Complements existing LPS FPS in low $x_{I\!P}$ regionsmaller ($x_{I\!P}, t$) coverage, but higher efficiency.

Higher $x_{I\!P}$ region still covered by H1 vertical FPS.

Measurements of t Dependences

Improved measurements of t dependences crucial . . .

• Variation of t slope with other variables $(x_{\mathbb{IP}}, W...)$ contains important dynamical information $(\alpha', \text{shrinkage})$

ZEUS results: $\psi \gamma p : \alpha' = 0.115 \pm 0.018^{+0.008}_{-0.015} \text{ GeV}^{-2}$ $\rho \text{ DIS: } \alpha' = 0.04 \pm 0.07^{+0.13}_{-0.04} \text{ GeV}^{-2}$ Not a soft IP, but some shrinkage! More data needed, esp. in DIS

• Large *t* region of VM as clean BFKL filter?

Data described by LO BFKL models but large normalisation uncertainties t dependence \rightarrow exponential?

Need to measure double differentially.

t Dependences of Inclusive Diffraction

Good knowledge of t dependence needed for full

understanding

Unknown t dependence can make model comparisons hard.

e.g. Dipole / 2 gluon exchange calculations yield $\left[\frac{d\sigma}{dt}\right]_{t=0}$ Normalisation of predictions $\sim 1/B$

Can we measure $B(\beta, Q^2, x_{\mathbb{P}})$?

$$(B = B_0 + 2 \alpha' \ln \frac{1}{x_{IP}})$$

Data so far inconclusive on shrinkage.

For VM, reconstruct *t* from decay products

Statistics is the main issue

For inclusive measurements, need proton tagging

Existing LPS / FPS smallest systematics but limited statistics.

<u>VFPS</u> will give 3-4 bins for $0 < |t| < 0.8 \text{ GeV}^2$.

Inclusive Diffraction and Factorisation

QCD Hard Scattering Factorisation for Semi-Inclusive DIS:-Diffractive parton densities $p_q^D(x_{I\!P}, t, x, Q^2)$ express *conditional* proton parton probability distributions with constraint of final state proton at particular $x_{I\!P}, t \dots$

 $\sigma_{\rm DIS}^{\rm Dif} \sim p_q^D(x_{I\!\!P},t,x,Q^2) \otimes \hat{\sigma}_{\rm pQCD}$

So far, insufficient precision / kinematic range to extract $p_q^D(x_{I\!\!P},t,x,Q^2)$ at fixed $x_{I\!\!P},t$

Additional Regge factorisation assumption required:

 $(x_{I\!\!P},t)$ dependence $\sim {
m I\!P}$ flux

Diffractive to Inclusive Ratio

Remarkable flatness of F_2^D/F_2 over wide kinematic range at large Q^2 requires further investigation ... deeper reasons?

QCD Factorisation Tests with VFPS

Restricted $x_{I\!\!P}$, t ranges, but low systematics due to high acceptance

Precision measurements of (x, Q^2) dependence from central detectors in small well controlled range of $(x_{\mathbb{P}}, t)$.

Systematics from proton measurement \sim normalisation.

Point-to-point systematics could reach 2-3% level of F_2 ?

Assume data from 3 years of HERA running, 50% operation efficiency:

 $ightarrow 350 \ {
m pb}^{-1}$ $\sim 10^6$ events ($Q^2 \gtrsim 5 \ {
m GeV}^2$)

Should be possible to extract diffractive pdfs for fixed $x_{{ I\!\!P}}, t$

Measured $0.01 \lesssim x_{I\!\!P} \lesssim 0.02$ region gives high yields of exclusive final state channels to test pdfs

e.g. ~ 30000 DIS dijets, 500 DIS D^*

Same triggers, VFPS selection \rightarrow many systematics cancel in final state comparisons.

Projected Diffractive Cross Section with VFPS

 σ_r^D for $x_{I\!\!P} = 0.017$, $|t| < 1 \,\mathrm{GeV^2}$, measuring $x = \beta x_{I\!\!P}$ and Q^2 in central detector

F_L^D Measurements

Inclusive diffraction cannot be fully understood without separating out longitudinal photon contributions:

pQCD calculable Higher Twist σ_L dominant at high β ? (BEKW, Saturation)

Definite predictions for exclusive final states (eg exclusive jets BJLW)

Leading Twist F_L^D tests hard scattering facⁿ (gluon at NLO)

Predictions from NLO fits need testing!

ZEUS 1994

F_L^D from Azimuthal Correlations

Interference between transverse and longitudinal photon induced processes leads to modulation in $\cos \phi_{ep}$.

Proton Spectrometers allow measurement of $\cos \phi_{ep}!$

VFPS resolution sufficient for $\cos \phi_{ep}$ in 15 bins at $|t| > 0.2 \, {
m GeV^2}$, 10000 events each.

Possibility of high statistics measurmeents differential in β etc

Skewed Parton Effects

For any 2 gluon exchange process, exchange gluon momenta differ by skewing $\xi = (Q^2 + M_X^2)/W^2$

Measurable effects in many processes ...

Experimental Sensitivity to GPDs

Skewed parton densities / GPDs generating great interest ...

- New information on proton structure (3D parton structure)
- Parton orbital momentum contribution to proton spin
- New sum rules
- Parton correlations
- Calculable higher twist

Real possibilities of measurements with DVCS, aided by interference with Bethe Heitler process

So far, H1, ZEUS measured cross sections integrated over ϕ Measurement of asymmetries (ϕ , beam charge, beam spin) give access to GPDs.

Full decomposition requires polarised target (HERMES!)

Asymmetry Measurements

HERMES already observed
dependence of beam
polarisation asymmetry
on φ
→ Imaginary part of
BH / DVCS interference term.
Real part from beam
charge asymmetry

Large asymmetries expected at HERA II. (Freund & McDermott)

Good sensitivity to models of GPDs

Reduced Proton Energy Running

 $\lesssim 50 \text{ pb}^{-1}$ may be taken with reduced E_p , for inclusive high xand F_L measurements ... Also useful for diffraction! Reducing E_p changes detector acceptance regions in W.

e.g. for $E_p = 400 \text{ GeV}$: W region of acceptance for $\rho \rightarrow \pi \pi$ with pions in Central Trackers ($20^\circ < \theta < 160^\circ$), at $Q^2 > 4 \text{ GeV}^2$.

Acceptance $\rightarrow W < 20 \,\mathrm{GeV}$

Similar extensions for all channels

... better constraints on $\delta(Q^2)$, ... higher sensitivity to α' ... comparisons with 2-gluon models over wider range in x

Reduced E_p and F_2^D

Reduced $E_p \rightarrow F_2^D$ measurements in new kinematic regions.

Acceptance \rightarrow higher $x_{I\!P}$ at fixed β Acceptance \rightarrow higher β at fixed $x_{I\!P}$ \dots Extended phase space for diffractive pdf extraction at fixed $x_{I\!P}$. \dots Improved sensitivity to sub-leading exchange terms. \dots Direct F_L^D extraction.

> Vary *s* to get $\sigma(\beta, Q^2, x_{I\!\!P})$ at different *y* 50 pb^{-1} at $E_p = 500 \text{ GeV}$ $\sim 40\%$ measurement of $R^D = F_L^D / (F_2^D - F_L^D)$

> > Comparable stat and syst errors

Outlook

- At HERA-I we started to understand diffraction in QCD
- Many questions do not have final answers:
 - Can semi-inclusive factorisation be tested directly?
 - Where does Regge factorisation break down?
 - What is the precise relationship between F_2^D and F_2 ?
 - How much does the hard pomeron shrink?
 - Is BFKL unambiguously seen in high |t| VM?
 - How well can GPDs be constrained?
 - ...
- HERA-I still under analysis (> 100 pb^{-1} per experiment)
- HERA-II ($\sim 1 \ {\rm fb^{-1}}$ per experiment by 2006)
- New detectors H1 VFPS
- At HERA-II, precision measurements of diffraction
- Many experimental and phenomenological challenges