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Hard diffraction is a major success story of HERA-I

New measurements on HERA-I data keep coming (DIS02)

But what does HERA-II have to offer?

Where will we be by DIS07? . . .



New tools with HERA-II

Since mid 2000, HERA has undergone major changes:

Focusing magnets inside H1 / ZEUS:→ L× 3.5

New spin rotators and polarimeters

Many components of experiments simultaneously

upgraded

Several new tools for Diffraction

• Factor ∼ 10 increase in statistics by end 2006

• New proton spectrometer (H1 VFPS)

• Polarised leptons

• Reduced centre of mass energy running?

Stable luminosity now achieved at H1 / ZEUS

Working towards increased currents / reduced backgrounds



A factor 10 in Statistics! → 1fb
−1

Many diffractive measurements systematically limited after

HERA-I:

• F
D(3)
2 at modest Q2

• Vector mesons at low Q2, |t|

• Energy flow, particle spectra, event shapes in diffraction

Many exclusive final states remain statistically limited:

• Diffractive D∗

• Exclusive dijet production (Bartels et al.)

• DVCS

• Vector mesons at large Q2, |t|

• Elastic Υ production

Higher statistics allow more differential measurements:

• e.g. t dependences (FD(4)
2 )



Proton Tagging

Two complementary measurement techniques used so far ...

1) Measure Hadrons Comprising X

γ( )

{ (MX)X

p

W

p
← Rapidity gap ∆η

∆η generally

large when

M
X
≪W

• Ample statistics!

• Large systematics from unseen proton - elastic or dissoc’?

• t measurements not generally possible.

• May be hard to trigger at HERA-II

2) Tag and measure Leading Proton in Dedicated Detectors

γ*

p p/n(E) (E )

No explicit

← gap requirement

x
IP

= E′/E
if exclusive p
at proton vertex.

• Provides a means of triggering.

• t, φ measurements possible.

• Systematics can be reduced.

• Limited stats up to now due to detector acceptance.



H1 Very Forward Proton Spectrometer

New tool for HERA-II: H1 VFPS

Roman pots at z ∼ 200 m, Installation end 2002

2 ‘Roman Pot’ insertions to proton beampipe, each with 2

scintillating fibre detectors

Trajectory of Scattered Protons at x
IP

= 0.01
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Acceptance of VFPS

Acceptance region defined by

beam optics and distance of

approach of detectors to beam

(3 mm for coasting beam.)

Close to 100% acceptance

achievable for |t| <
∼ 0.2 GeV2,

0.01 <
∼ x

IP

<
∼ 0.02

Complements existing LPS

FPS in low x
IP

region . . .

. . . smaller (x
IP

, t) coverage,

but higher efficiency.

Higher x
IP

region still

covered by H1 vertical FPS.



Measurements of t Dependences

Improved measurements of t dependences crucial . . .

• Variation of t slope with other variables (x
IP

,W . . . )

contains important dynamical information (α′, shrinkage)

ZEUS

t (GeV2)

α 
(t

)

γp → J/ψp

ZEUS 96-97 J/ψ → µ+µ-

ZEUS 99-00 J/ψ → e+e-
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ψ γp : α′ = 0.115± 0.018+0.008
−0.015 GeV−2

ρ DIS: α′ = 0.04± 0.07+0.13
−0.04 GeV−2

Not a soft IP,

but some shrinkage!

More data needed, esp. in DIS

• Large t region of VM as clean BFKL filter?
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Data described by LO BFKL models

but large normalisation uncertainties

t dependence→ exponential?

Need to measure double

differentially.



t Dependences of Inclusive Diffraction

Good knowledge of t dependence needed for full

understanding

Unknown t dependence can make model comparisons hard.

e.g. Dipole / 2 gluon exchange calculations yield
[

dσ
dt

]

t=0

Normalisation of predictions ∼ 1/B
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x
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)

Data so far inconclusive

on shrinkage.

For VM, reconstruct t from decay products

Statistics is the main issue

For inclusive measurements, need proton tagging

Existing LPS / FPS smallest systematics but limited statistics.

VFPS will give 3-4 bins for 0 < |t| < 0.8 GeV2.



Inclusive Diffraction and Factorisation

QCD Hard Scattering Factorisation for Semi-Inclusive DIS: -

Diffractive parton densities pD
q (x

IP
, t,x, Q2) express

conditional proton parton probability distributions with

constraint of final state proton at particular x
IP
, t . . .

σDif
DIS ∼ pD

q (x
IP

, t, x, Q2) ⊗ σ̂pQCD
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(x
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, t) dependence ∼ IP flux



Diffractive to Inclusive Ratio

Remarkable flatness of FD
2 /F2 over wide kinematic range at

large Q2 requires further investigation . . . deeper reasons?
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QCD Factorisation Tests with VFPS

Restricted x
IP
, t ranges, but low systematics due to high

acceptance

Precision measurements of (x, Q2) dependence from central

detectors in small well controlled range of (x
IP

, t).

Systematics from proton measurement ∼ normalisation.

Point-to-point systematics could reach 2-3% level of F2?

——————————————————-

Assume data from 3 years of HERA running, 50% operation

efficiency:

→ 350 pb−1 ∼ 106 events (Q2 >
∼ 5 GeV2)

Should be possible to extract diffractive pdfs for fixed x
IP
, t

——————————————————-

Measured 0.01 <
∼ x

IP

<
∼ 0.02 region gives high yields of

exclusive final state channels to test pdfs

e.g. ∼ 30000 DIS dijets, 500 DIS D∗

Same triggers, VFPS selection→ many systematics cancel in

final state comparisons.



Projected Diffractive Cross Section with VFPS

σD
r for x

IP
= 0.017, |t| < 1 GeV2, measuring x = βx

IP
and Q2 in central detector

t INTEGRATED σr
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F D
L Measurements

Inclusive diffraction cannot be fully understood without

separating out longitudinal photon contributions:

ZEUS 1994
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F D
L from Azimuthal Correlations

Interference between transverse and longitudinal photon

induced processes leads to modulation in cosφep.

Proton Spectrometers allow measurement of cosφep!

positron plane proton plane
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dσ
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dσ
d cos φ

∝ 1 + ALT cosφ

ALT = −0.049± 0.058 (stat)

+0.056
−0.009 (syst)

Lots more stats needed!

VFPS resolution sufficient for cosφep in 15 bins at

|t| > 0.2 GeV2, 10000 events each.

Possibility of high statistics measurmeents differential in β etc



Skewed Parton Effects

For any 2 gluon exchange process, exchange gluon momenta

differ by skewing ξ = (Q2 +M2
X

)/W 2

Measurable effects in many processes . . .
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Skewing effect

changes predictions

by factor ∼ 2

(Martin, Ryskin,
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Experimental Sensitivity to GPDs

Skewed parton densities / GPDs generating great interest . . .

• New information on proton structure (3D parton structure)

• Parton orbital momentum contribution to proton spin

• New sum rules

• Parton correlations

• Calculable higher twist

Real possibilities of measurements with DVCS, aided by

interference with Bethe Heitler process

e
e

γ*

p p

γ

e

e

γ*

p p

γ

a) b)

So far, H1, ZEUS measured cross sections integrated over φ

Measurement of asymmetries (φ, beam charge, beam spin)

give access to GPDs.

Full decomposition requires polarised target (HERMES!)



Asymmetry Measurements
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Reduced Proton Energy Running

<
∼ 50 pb−1 may be taken with reduced Ep, for inclusive high x

and FL measurements . . . Also useful for diffraction!

Reducing Ep changes detector acceptance regions in W .
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ρ→ ππ with pions in Central

Trackers (20◦ < θ < 160◦),

at Q2 > 4 GeV2.

Acceptance→W < 20 GeV

Similar extensions for all channels

. . . better constraints on δ(Q2),

. . . higher sensitivity to α′

. . . comparisons with 2-gluon

models over wider range in x

. . .



Reduced Ep and F D
2

Reduced Ep → FD
2 measurements in new kinematic regions.
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Outlook

• At HERA-I we started to understand diffraction in QCD

• Many questions do not have final answers:

– Can semi-inclusive factorisation be tested directly?

– Where does Regge factorisation break down?

– What is the precise relationship between FD
2 and F2?

– How much does the hard pomeron shrink?

– Is BFKL unambiguously seen in high |t|— VM?

– How well can GPDs be constrained?

– . . .

• HERA-I still under analysis (> 100 pb−1 per experiment)

• HERA-II (∼ 1 fb−1 per experiment by 2006)

• New detectors - H1 VFPS . . .

• At HERA-II, precision measurements of diffraction

• Many experimental and phenomenological challenges


