<u>More Low x Observables</u> <u>at the LHeC</u>

Armen Bunyatyan (MPI-Heidelberg) Laurent Favart (ULB Brussels) Jeff Forshaw (Manchester) Max Klein (Liverpool) Cyrille Marquet (Columbia) Andrew Mehta (Liverpool) Paul Newman (Birmingham)

> Divonne LHeC Workshop 2 September 2008

A compendium of first studies of a few processes ...

- What kinematic range can LHeC cover?
- What sort of precision can be reached?
- Should we care?

The "Birth" of Experimental Low x Physics

• Biggest HERA discovery?.. strong increase of quark density (F_2) and gluon density $(d F_2 / d \ln Q^2)$ with decreasing x.

 \cdot Low x, `large' Q^2 region is a new high density, low coupling limit of QCD

Current Status of Low × Physics

RHIC, Tevatron and HERA have taught us a lot, ... but many questions are not fully answered...

• Are non-DGLAP parton evolution dynamics visible in the initial state parton cascade?

- How and where is the parton growth with decreasing x tamed (unitarity)?
- Large (~ constant?) fraction of diffraction?

Problem is that low x is kinematically correlated to low Q^2 , which brings problems with partonic interpretation

Decrease x

The LHeC for Low x Investigations

2 modes considered:

LHeC - Low x Kinematics

agnet To optimise lumi detector ceptr acceptance to 170° ... little 10 acceptance below Q²=100 GeV²

2) No focusing ... acceptance to $179^{\circ} \rightarrow access$ to Q²=1 GeV² for all x > 5 x 10⁻⁷! Lumi ~ 1 fb⁻¹ / yr

Some First Low x Detector Considerations

• Low x studies require electron acceptance to 1° to beampipe

HERA	E_e =30GeV	E _p =920GeV
		◄
LHeC	E_=70GeV	E_=7000GeV

- Considerably more asymmetric beam energies than HERA!

 Hadronic final state at newly accessed lowest x values goes central or backward in the detector ©
 At x values typical of HERA (but larger Q²), hadronic final state is boosted more in the forward direction.
- Study of low x / Q^2 and of range overlapping with HERA, with sensitivity to energy flow in outgoing proton direction requires forward acceptance for hadrons to 1°

... dedicated low x set-up with no (or active?) focusing magnets?

Dipole Model Predictions

• In what follows, comparisons are made with low-x extrapolations of a number of different dipole models, as a simple means of obtaining unified predictions for various inclusive and exclusive processes ...

F₂, F₂^c, F₂^b, F_L, high β F₂^b, DVCS, VMs - qqbar - p interaction in universal σ_{dipole} - Process dependence in wavefn factors

e.g.
$$\sigma_{\gamma^* p}^{T,L}(x,Q^2) \sim \int dz \, d^2 r \, \left| \psi_{\gamma^*}^{T,L}(z,r,Q^2) \right|^2 \sigma_{dipole}(x,r,z)$$

-All such models here are based on fits to HERA data and 'blindly' extrapolated to LHeC range. -All implement saturation in σ_{dipole} except `FS04-Regge' ... more details in this afternoon's talk Example low x F₂ with LHeC Data With 1 fb-1 (1 year at 10³³ cm⁻² s⁻¹), 1° detector: Stat. precision < 0.1%, syst, 1-3% [see Max Klein's talk]

Precise data in LHeC region, $x > \sim 10^{-6}$

- Extrapolated FS04, CGC models including sat'n suppressed at low x, Q² relative to non-saturating FSRegge

... new effects may not be easy to see and will certainly need low $Q^2 (\theta \rightarrow 179^\circ)$ region ...

[Max Klein] The Gluon from F_1 ? 🕨 LHeC O H1 low Ep run (projected) Vary proton beam energy as recently $O^2 = 5 GeV^2$ $O^2 = 2 \text{ GeV}^2$ $Q = 15 \text{ GeV}^2$ done at HERA ?... 0.5 0.5 0.5 Lumi (fb⁻¹) E_{p} (TeV) 10^6 10^5 10^4 10^3 10^2 10^1 10^6 10^5 10^4 10^3 10^2 10^1 $10^6 \ 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1$ $Q^2 = 30 \text{ GeV}^2$ $Q^2 = 200 \text{ GeV}^2$ $Q^2 = \frac{70}{10} \text{ GeV}^2$ 0.5 0.5 0.5 0.8 0.2 10^6 10^5 10^4 10^3 10^2 10^1 $10^5 10^4 10^3 10^2 10^1$ $10^5 10^4 10^3 10^2$ 10⁻¹ 0.05 $Q^2 = 700 \text{ GeV}^2$ $O^2 = 2000 \text{ GeV}^2$ $O^2 = 7000 \text{ GeV}^2$ [0.45 0.01] 0.5 0.5 0.5 [~ 1 year of running] 10^6 10^5 10^4 10^3 10^2 10^1 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² $10^5 10^4 10^3 10^2 10^3$

... precision typically 5%, stats limited for Q² > 1000 GeV²

Typically lose 1-2 points at high x if $E_p = 0.45$ TeV not possible

Statistical errors ~2-3%, systematics ~5%

DVCS Measurement

... the classic approach to `generalised parton densities' (GPDs)

... can be tackled as at HERA through inclusive selection of ep \rightarrow ep γ and statistical subtraction of Bethe-Heitler background

Example of DVCS at LHeC

(1° acceptance)

Statistical precision with $1 \text{fb}^{-1} \sim 2-11\%$

With F_2 , F_L , could help establish saturation and distinguish between different models which contain it?

Cleaner interpretation in terms of GPDs at larger LHeC Q² values

VMs similar story?... No work done so far 🛞

Diffractive DIS at HERA

`Discovery' at HERA (~10% of low x events are of type ep -> eXp)

 Parton-level mechanism, relations to diffractive pp scattering, inclusive DIS, confinement still not settled.

• QCD Factorisation: Diffractive parton densities (DPDFs) universal to diffractive DIS (apply to both HERA and LHeC)

... can also be used to predict pp with additional `gap survival' factors

LHeC Diffractive DIS Kinematics

LHeC Simulation

3) Extension to lower x_{IP} $\rightarrow x_{IP}$ =10⁻⁵ @ high β

 Cleaner separation of diffractive exchange

• x dependence of diffractive: inclusive ratio at fixed M_x , Q^2

• Surprising agreement between models at high β - qqbar dipoles dominate? - well measured $(1/x_{IP})^n$ for extrapolation in HERA β , Q² range?

(LRG method assumed)

Final States in Diffraction

- Factorisation tests done at HERA with gluon initiated jet / charm processes... BUT ...
- Kinematically restricted to high β region where F_2^{D} is least sensitive to the gluon!
- Kinematically restricted to low $p_T < M_x/2$ where scale uncertainties are large.
- γp surprises \rightarrow understanding gap survival?... Diff H @ LHC?

Final States in Diffraction at the LHeC

• At LHeC, diffractive masses M_x up to hundreds of GeV can be produced with low x_{IP}

- Low β , low x_{IP} region for jets and charm accessible
- Final state jets etc at higher p_t
 ... much more precise factorisation
 tests and DPDF studies (scale uncty)
- New diffractive channels ...
 beauty, W / Z / H(?) bosons
- Unfold quantum numbers / precisely measure new exclusively produced 1⁻ states ^p

Forward and Diffractive Detectors

- Very forward tracking / calorimetry with good resolution ...
- Proton and neutron spectrometers ...
- Reaching $x_{IP} = 1 E_p'/E_p$ = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!
- Roman pots, FNC should clearly be an integral part.
 - Also for t measurements
 - Not new at LHC \odot
 - Being considered integrally with interaction region

 $\log_{10}(x_{IP})$

Leading Neutrons: Experience at HERA

- Size and location determined by available space in tunnel...
- Requires a straight section at $\theta \sim 0^\circ$ after beam is bent away.
- H1 version \rightarrow 70x70x200cm Pb-scintillator (SPACAL) calorimeter with pre-shower detector 100m from IP.
- Geometrical acceptance limited to θ <0.8mrad by beamline

Very radiation hard detectors needed for LHC environment c.f. Similar detectors (ZDCs) at ATLAS and CMS

Why Leading Neutrons?

• Sensitivity to $p \rightarrow \pi n$ fluctuations and the π structure function

 Sensitivity to absorptive effects and rapidity gap survival issues

> • Tests of cosmic ray models relating observed shower particles (neutrons) to primaries (beam Protons) c.f. HERA studies v x_L c.f. dedicated LHCf experiment

Summary / Uncovered Topics

This talk (and Jung, Klein, Kluge, Behnke) contained only limited first studies:

- LHeC accessible kinematic ranges assessed for most low x channels which have been important at HERA

- LHeC extends, clarifies, maybe yields breakthroughs
- Statistics are rarely a problem
- Forward / backward acceptance and beamline

instrumentation are fundamentally important

Some obvious omissions - e.g. completely unstudied so far:

- Prompt photons
- Photoproduction and photon structure
- Exclusive vector meson production

Much more detailed studies needed for the rest. - We only scratched the surface so far.

Long HERA program Fo to understand parton cascade emissions by direct observation of jet pattern in the forward direction. ... DGLAP v BFKL v CCFM v resolved γ^* ...

Conclusions limited by kinematic restriction to high x (>~ 2.10^{-3}) and detector acceptance.

At LHeC ... more emissions due to longer ladder & more instrumentation \rightarrow measure at lower x where predictions really diverge.

Systematic Precision Requirements

e.g. Requirements based on reaching per-mil $\alpha_{\rm s}$ (c.f. 1-2% now) The new collider ...

- should be 100 times more luminous than HERA ...

... achievable using low β focusing quad's (acceptance \rightarrow 170°) The new detector

- should be at least 2 times better than H1 / ZEUS

Redundant determination of kinematics from e and X is a huge help in calibration etc!

```
Lumi = 10^{33} cm<sup>-2</sup> s<sup>-1</sup>
Acceptance 10-170° (\rightarrow179°?)
Tracking to 0.1 mrad
EM Calorimetry to 0.1%
Had calorimtry to 0.5%
Luminosity to 0.5%
```

```
(HERA 1-5 x 10^{31} cm<sup>-2</sup> s<sup>-1</sup>)
(HERA 7-177°)
(HERA 0.2 - 1 mrad)
(HERA 0.2-0.5%)
(HERA 1%)
(HERA 1%)
```

Beyond Inclusive Measurements

Forward Jets,

- Direct tests of assumed parton evolution patterns
- ? Understanding limited by instrumentation near beam-pipe

Diffraction

- Unique clean probe of gap dynamics and elastic scattering ? Understanding limited by (forward) detectors ...

Inclusive Kinematics for 70 GeV x 7 TeV

 $\sqrt{s} = 1.4 \text{ TeV}$ $W \le 1.4 \text{ TeV}$ $x \ge 5.10^{-7} \text{ at}$ $Q^2 \le 1 \text{ GeV}^2$

- High mass (Q²) frontier
- Q² lever-arm at moderate x
- Low x (high W)
 frontier

Forward particles at HERA and models for cosmic rays

Important observable for shower development: 'elasticity' - ratio between the energy of leading particle to that of incoming particle Elead/E In a model with Feynman scaling in forward region elasticity does not depend on energy

 $\mathbf{x}_{\mathrm{lab}}$ =energy fraction carried by the leading proton or neutron

Comparison of HERA data with the MC models used for cosmic ray physics: -For leading protons- reasonable agreement between the measurements and the models - the HERA data discriminate between the models -For leading neutrons - none of models describe the data \rightarrow room for improvement, common effort from CR and HERA needed

Armen Bunyatyan, Forward Neutral particles at HERA and Cosmic Rays

Forward Neutron Calorimeter (FNC)

Size and weight of FNC defined by the space available in the HERA tunnel: •position- 105m from the interaction point, •size ~ 70 × 70 × 200cm³, weight <10t

•geometrical acceptance is limited by beam-line elements <0.8mrad

Armen Bunyatyan, Forward Neutral particles at HERA and Cosmic Rays

HERA-LHC workshop

Structure of H1-FNC

Longitudinal segmentation: 'Preshower' + 4 modules of 'Main' calorimeter

		Nuclear interaction lengths
Material	Depth (mm)	λ_I
e/m part		
PbSb4	7.5×12	0.52
scintillator	2.6×13	0.04
Tyvek paper	0.3×12	0.00
air	1.2×12	0.00
total e/m part	142	0.56
hadron part		
PbSb4	14. \times 12	0.98
scintillator	5.2×12	0.07
Tyvek paper	0.3×12	0.00
air	0.6×12	0.00
total hadr.part	251	1.05
total	393	1.6

'Preshower'

- $26 \times 26 \times 38.6 \text{ cm}^3 (1.6\lambda)$
- 12 x-layers, 12 y-layers, each layer

has 9 readout strips

- ~40% of hadronic shower is deposited in Preshower
- allows separation of e/m and hadronic showers

		Nuclear interaction lengths
Material	Depth (mm)	λ_I
PbSb4	14×100	8.20
scintillator	3.0×100	0.34
Tyvek paper	0.3×100	0.00
steel	0.6 imes 100	0.36
air	2.0×100	0.00
total	2000	8.9

<u>'Main' calorimeter</u>

• 4 modules, each 60 x 70 x 50 cm³ (2.2 λ)

8 readout towers for each module

Armen Bunyatyan, Forward Neutral particles at HERA and Cosmic Rays

HERA-LHC workshop

LHeC Heavy Quarks: LHeC 5 IQ 10^{4} x=0.00003 x=0.0003 h High precision c, b measurements 10^{3} x=0 0007 (modern Si trackers, beam 10^2 x=0 003 spot 15 * 35 μ m² , increased x=0.007 rates at larger scales). 10¹ Systematics at 10% level x=0.03 10⁰ \rightarrow beauty is a low x observable! 10⁻¹ x=0 07 \rightarrow s (& sbar) from charged current HERA 10^{-2} 10¹ 10 10 Q²/GeV² LHeC LHeC 10° acceptance O LHEC 1° acceptance 0.8 S (A. Mehta, M. Klein) (Assumes 1 fb⁻¹ and 0.6 e - 50% beauty, 10% 0.4 charm efficiency ***** С 0.2 - 1% uds \rightarrow c 0 S mistag probability. 0 - 10% c \rightarrow b mistag) 10^4 10° p $Q^{2}=2000 \text{ GeV}^{4}$

 $1 \, \text{fb}^{-1}$

10