<u>Establishing</u> <u>Parton Saturation</u> <u>at a TeV scale</u> ep Collider

J Forshaw (Manchester) M Klein (Liverpool) P Newman (Birmingham) E Perez (CERN)

> LHeC Workshop Divonne

2 September 2008

LHeC — Low x Kinematics

Thanks for additional predictions to C Marguet and G Soyez

Reminder : Dipole models

• Unified description of low x region, including region where Q^2 small and partons not appropriate degrees of freedom ...

$$\sigma_{\gamma^*p}^{T,L}(x,Q^2) \sim \int \mathrm{d}z \, \mathrm{d}^2 r \, \left| \psi_{\gamma^*}^{T,L}(z,r,Q^2) \right|^2 \sigma_{dipole}(x,r,z)$$

• Simple unified picture of many inclusive and exclusive processes ... F_2 , F_2^c , F_2^b , F_L , high β F_2^D , DVCS, VMs ... strong interaction physics in (universal) dipole cross section σ_{dipole} .

... process dependence in wavefunction Ψ Factors

• In perturbative region, $\sigma_{dipole} \sim \alpha_s r^2 \times g(x, 1/r^2)$

4 Dipole Models used for Illustration

- 1) <u>`FSO4 Regge'</u> Non-saturating (Regge inspired) model Dipoles with $r < r_0$ scatter with $\sigma \sim x^{-0.3}$ Dipoles with $r > r_0$ scatter with $\sigma \sim x^{-0.07}$ r_0 constant
- 2) <u>FS04 Sat</u> saturating model Dipoles with $r < r_s$ scatter with $\sigma \sim x^{-0.3}$ Dipoles with $r > r_s$ scatter with $\sigma \sim x^{-0.06}$ r_s decreases with decreasing x Forsh

Forshaw, Shaw: JHEP 0412:052 (2004)

3,4) `<u>CGC</u>' saturating model BFKL-like cross section for r<r_s(x) constant for r>r_s(x)

> Iancu, Itakura, Munier: Phys Lett B590 (2004) 199 Kowalski, Motyka, Watt: Phys Rev D74 (2006) 074016

3) Forshaw & Shaw and 4) Marquet & Soyez implementations differ in heavy flavour treatment

A Search for Parton Saturation @ HERA

Forshaw, Sandapen, Shaw hep-ph/0411337,0608161 ... used for illustrations here Fit inclusive HERA data using dipole models with and without parton saturation effects in σ_{dipole}

FS04 Regge

• All three models can describe data with $Q^2 > 1GeV^2$, x < 0.01

- \cdot Only versions with saturation work for 0.045 < Q^2 < 1 GeV^2
- All models adequately describe final state observables
- Similar conclusions from Kowalski, Motyka, Watt
 ... any saturation at HERA not easily interpreted partonically

c.f. Bartels yesterday: $Q_s^2 \sim 0.8 \text{ GeV}^2 \otimes x=10^{-4}$

Geometric Scaling at the LHeC

Range of F₂ Predictions for LHeC

... pure low-x extrapolation of fits to data in HERA region

 Models including saturation suppressed relative to that without (FS04-Regge) at low x, Q²

 Big differences even between CGC-based models

Range of F_L Predictions for LHeC

• Low $x F_L$ reflects differences between gluon densities.

 Significant differences between all models.

 \cdot F_2 (quarks) and F_L (gluons) together are a powerful combination

Can we see Saturation unambiguously at LHeC?

- Can saturated dipole model data be fitted using a dipole model not containing saturation?

8

7

6

5

4

3

2.

1

0

10

5

15

 Q_{mk}^2

20

25

30

 χ^2 /dof

Take ZEUS and FS04 simulated LHeC data

... attempt to fit using FS-Regge (non-saturating) model

... fit quality improves progressively as lowest Q² data containing satⁿ effects are removed

Regge model fit compared with ZEUS data

... reasonable fits to ZEUS data

Regge model fit v FSO4 LHeC data

... origin of poor χ^2 for $Q^2_{min} = 2 \text{ GeV}^2$ is low x, low Q^2 region, but arises from only a handful of data points.

What about Extrapolating a DGLAP model?

CTeQ 6.1 starting scale distributions beyond HERA x range are pure extrapolation of parameterisation, but ... - it lies above saturation models at low x -its Q² evolution follows **DGLAP** expectations Question: Can we see DGLAP fail in Q^2 dependence?... ... or can DGLAP be made to fit data which include saturation effects?

FS04 / CGC (satn) data as `straw men': can DGLAP fit them?

Can DGLAP adjust to fit LHeC sat models?

To give DGLAP best chance, use dipole-like (GBW) Q_0^2 gluon.

$$\bar{xq}(x,Q_0^2) = A_q x^{B_q} (1-x)^{C_q} \qquad xg(x,Q_0^2) = A_g \left(1 - \exp\left[-B_g \log^2\left(\frac{x}{x_0}\right)^{\lambda} \right] \right) (1-x)^{C_g}$$

- Free parameters: A_q , B_q , A_g , B_g , x_0 , λ , C_g
- u_v , d_v and high x parameter C_q from H1PDF2K
- NLO DGLAP in MSbar scheme

Fixed flavour number scheme with $m_c = 1.4 \text{ GeV}$, $m_b = 4.5 \text{ GeV}$

[massless scheme similar]

 $\alpha_s(Mz) = 0.1185, Q_0^2 = 1.9 \text{ GeV}^2$ [just below charm threshold]

Philosophy: fit ZEUS and LHeC saturation model data in increasingly narrow (low) Q² region until good fit obtained

Fitting ZEUS + FSO4 data with DGLAP Acceptable fit when all data with $Q^2 \le 20 \text{ GeV}^2$ included. FS04 dataset, F2 χ^2 = 56.8 for 62 ZEUS points χ^2 = 35.1 for 30 FS04 points $Q^2 = 2 GeV^2$ $Q^2 = 5 GeV^2$ χ^2 / ndf = 1.07 Extrapolation to 10 ⁻⁵ 10 -4 10 -5 10 -4 -3 10 10 х х Q²=50 GeV² fails with 5 lowest x points 4 $Q^2 = 10 \ GeV^2$ $Q^2 = 20 GeV^2$ Gluon looks saturated Q_{0}^{2} 10 -5 10 -4 10 ⁻³ 10 ⁻⁵ 10 -4 10 10 10 х х g(x) g(x) $Q^2 = 1.9 \text{ GeV}^2$ $Q^2 = 4 \text{ GeV}^2$ 4.5 $Q^2 = 50 GeV^2$ 10 10 10 х

х

F_L Prediction from ZEUS + FSO4 DGLAP fit

 Q^2 dependence of F_L FS04 data not well Described

 F_2 and F_L together are powerful!

Fitting ZEUS + CGC F_2 data with DGLAP

- No successful fits to F_2 over any significant Q^2 range: e.g. $\chi^2/ndf \sim 3$ when including all $Q^2 \ll 5$ GeV² data.
- Can fit $Q^2 = 2 \text{ GeV}^2$ (LHeC) and $Q^2 = 2.7 \text{ GeV}^2$ (ZEUS), but then not much constrains the gluon.

... exhibits saturation type behaviour nonetheless

 Another approach: fit for Q² < 3 GeV² to both F2 (LHeC and ZEUS) to constrain quarks FL (LHeC) to constrain gluons

Fitting ZEUS + FS-CGC F_2 and F_L data

- Fits $Q^2 = 2 \text{ GeV}^2$ only.
- Extrapolation of fit to higher Q² describes neither $dF_2/dlnQ^2$ nor F_L . \rightarrow DGLAP clearly not coping.

Conclusions

- Saturation effects may be present in HERA data, but there is no compelling evidence within the perturbative domain ... strong motivation for lower x measurements.

- Study so far is by no means definitive, but ...

... Saturation models which fit very low Q^2 HERA data lead to F_2 predictions at LHeC which cannot be easily be `faked' by pure DGLAP evolution.

- Somewhat dependent on details of saturation model.
- Low x resummations etc not yet considered

... If fitting F_2 alone is insufficient to establish an effect, tension between F_2 and other observables, (F_L in particular) could be a very powerful tool.

Systematic Precision Requirements

e.g. Requirements based on reaching per-mil $\alpha_{\rm s}$ (c.f. 1-2% now) The new collider ...

- should be 100 times more luminous than HERA ...

... achievable using low β focusing quad's (acceptance \rightarrow 170°) The new detector

- should be at least 2 times better than H1 / ZEUS

Redundant determination of kinematics from e and X is a huge help in calibration etc!

```
Lumi = 10^{33} cm<sup>-2</sup> s<sup>-1</sup>
Acceptance 10-170° (\rightarrow179°?)
Tracking to 0.1 mrad
EM Calorimetry to 0.1%
Had calorimtry to 0.5%
Luminosity to 0.5%
```

```
(HERA 1-5 x 10^{31} cm<sup>-2</sup> s<sup>-1</sup>)
(HERA 7-177°)
(HERA 0.2 - 1 mrad)
(HERA 0.2-0.5%)
(HERA 1%)
(HERA 1%)
```

Inclusive Kinematics for 70 GeV x 7 TeV

 $\sqrt{s} = 1.4 \text{ TeV}$ $W \le 1.4 \text{ TeV}$ $x \ge 5.10^{-7} \text{ at}$ $Q^2 \le 1 \text{ GeV}^2$

- High mass (Q²) frontier
- Q² lever-arm at moderate x
- Low x (high W)
 frontier

Fit to ZEUS + CGC, $Q2 \le 3$ GeV2, and x < 1e-3 for the LHeC dataset

Leads to a "better" fit - but of course on much less data points...

How this fit does describe FL

