Physics at High Parton Densities II

Nestor Armesto Brian Cole Paul Newman Anna Stasto

Divonne LHeC Workshop 3 September 2008

Some experimental considerations ...

- Where is saturation and how can we tell?
- What are the most important low x observables?
- What are the implications for the detector?

Forward Instrumentation at LHC

[Campanelli] TOTEM -T2 CASTOR **ZDC/FwdCal** TOTEM-RP **FP420** D 140 m 14 m 16 m 147m - 220m420 m P 1 LUCID ATLAS LUCID ZDC ALFA/RP220 **FP420**

Need to learn from / reuse LHC forward detector technology!

Detector requirements for Low x

More Low x Detector Considerations

• Low x studies require electron acceptance to 1° to beampipe

HERA	E_e =30GeV	E _p =920GeV
		◄
LHeC	E _e =70GeV	E ₀ =7000GeV

- Considerably more asymmetric beam energies than HERA!

 Hadronic final state at newly accessed lowest x values goes central or backward in the detector ©
 At x values typical of HERA (but larger Q²), hadronic final state is boosted more in the forward direction.
- Study of low x / Q^2 and of range overlapping with HERA, with sensitivity to energy flow in outgoing proton direction requires forward acceptance for hadrons to 1°

... dedicated low x set-up with no (or active?) focusing magnets?

Some models of low x F₂ with LHeC Data With 1 fb⁻¹ (1 year at 10³³ cm⁻² s⁻¹), 1° detector: stat. precision < 0.1%, syst, 1-3%

[Klein, Forshaw, Marquet ...]

Precise data in LHeC region, x > ~10⁻⁶

- Extrapolated (FS04, CGC) models including sat'n suppressed at low x, Q² relative to non-saturating FS04-Regge

... new effects may not be easy to see and will certainly need low Q² ($\theta \rightarrow 179^{\circ}$) region ...

How to establish Saturation be at LHeC?

... effects may not be so large in ep \rightarrow and may be hard to establish unambiguously with inclusive observables only ... $A^{1/3}$ amplification in gluon in eA (~6 for Pb) may be needed ... Two first studies using F₂ and F_L in ep only ...

Can saturation effects at LHeC (FSO4-sat) be absorbed into NNPDF1.0 DGLAP PDF analysis?

NNPDF Fits including LHeC-Sat Pseudo-Data

NLO DGLAP + NNPDFs seem to be able to reproduce $F_2^{sat}(x, Q^2)$, but more difficulties for $F_L^{sat}(x, Q^2)$ Lesson II :

- 1. $F_L(x, Q^2)$ crucial observable to understand low-x QCD at LHeC (But require precise measurements)
- 2. Not all observables equivalent to disentangle saturation

Next step could be to incorporate flavour decomposed LHeC data (F2^b, F2^c, F2^s ...)

Can DGLAP adjust to fit LHeC sat models?

[Forshaw et al.]

• Attempt to fit ZEUS and LHeC saturation model data in increasingly narrow (low) Q² region until good fit obtained • Use dipole-like (GBW) gluon parameterisation at Q_0^2

$$xg(x,Q_0^2) = A_g\left(1 - \exp\left[-B_g \log^2\left(\frac{x}{x_0}\right)^{\lambda}\right]\right) (1-x)^{C_g}$$

• Even when fitting F_2 only, a good fit can only be obtained in a limited Q^2 range (in this case 2 < Q^2 < 20 GeV²)

F_L Prediction from ZEUS + FSO4 DGLAP fit

- \cdot Q² dependence of this fit doesn't describe LHeC F_L pseudo-data
- \cdot Also not well described when F_{L} included in fit

... F_2 and F_L together are a powerful combination!

• General agreement that we should look beyond F_2 and F_L at final state observables (changing the beam energy for F_L probably not an early phase LHeC measurement!)

Jets and Heavy Flavours

Constrain gluon through jets and heavy flavour measurements

e.g. F_2^{b} to a few % constraining gluon down to x ~ 2.10⁻⁵.

Much more in QCD/EW summary

Azimuthal (de)correlations between Jets

More on Jet Correlations

[Bartels]

Suggestion: measure

correlations (e.g. two-jet) as reliable signal of saturation (multiple interactions):

Correlations in rapidity, angle. Was difficult at HERA (for larger Q^2), for LHeC factor 2.0 in 1/x will help.

... to be simulated and investigated ...

DVCS at LHeC

(1° acceptance)

Statistical precision with $1 \text{fb}^{-1} \sim 2-11\%$

With F_2 , F_L , could help establish saturation and distinguish between different models which contain it?

Cleaner interpretation in terms of GPDs at larger LHeC Q² values

VMs similar story?... No work done so far 😕

LHeC Diffractive DIS Kinematics

LHeC Simulation

Diffractive Final States

• M_x up to hundreds of GeV at LHeC ...

→ Diffractive jets And charm at high Pt and low zIP

J→ New diffractive
v channels (b,W,Z, excl 1⁻)

Diffractive Final States

LHeC

HERA

250

Events per pb⁻

10

10 ³

10 ²

10

1

 $(x_{IP} < 0.05)$

100

150

200

50

 $\cdot M_{x}$ up to hundreds of GeV at LHeC ...

 $(RAPGAP) \rightarrow Diffractive jets$ And charm at high Pt and low zIP

 \rightarrow New diffractive 30 M, / GeV Channels (b,W,Z,excl 1⁻)

Something to search for in satⁿ limit...

[Brodsky] "Final state interactions not in target wavefunction destroying factorisation (not only in diffraction!)"

Forward and Diffractive Detectors

- Very forward tracking / calorimetry with good resolution ...
- Proton and neutron spectrometers ...
- Reaching $x_{IP} = 1 E_p'/E_p$ = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!
- Roman pots, FNC should clearly be an integral part.
 - Also for t measurements
 - Not new at LHC \odot
 - Being considered integrally with interaction region

 $\log_{10}(x_{IP})$

Leading Neutrons: Experience at HERA

- Size and location determined by available space in tunnel...
- Requires a straight section at $\theta \sim 0^\circ$ after beam is bent away.
- H1 version \rightarrow 70x70x200cm Pb-scintillator (SPACAL) calorimeter with pre-shower detector 100m from IP.
- Geometrical acceptance limited to θ <0.8mrad by beamline

Very radiation hard detectors needed for LHC environment c.f. Similar detectors (ZDCs) at ATLAS and CMS

π Structure with Neutrons

• With $\theta_n < 1 \text{ mrad}$, similar x_L and p_t ranges to HERA (a bit more p_t lever-arm for π flux).

• Extentions to lower β and higher Q² as in leading proton case. $\rightarrow F_2^{\pi}$ At β <5.10⁻⁵ (cf HERA reaches β ~10⁻³)

Also relevant to absorptive corrections, cosmic ray physics $\frac{10^2}{...}$

min $\gamma^* (\mathbf{Q}^2)$ [Bunyatyan] X (RAPGAP MC model, $(\mathbf{x}_{L}=\mathbf{E}_{n}/\mathbf{E}_{p})$ $E_p = 7 TeV$, D E_=70GeV) RAPGAP – π – exchange, x_L=0.7, LHeC 10 _{10⁻³} (θ_e=175 (y=1) 10

Overall Status and Plans

At this meeting, we saw some nice first studies:

 \rightarrow LHeC kinematic coverage and precision

 \rightarrow How might we establish parton saturation?

All needs to be studied in much more detail!

Some obvious complete omissions:

- \rightarrow All eA possibilities
- \rightarrow Exclusive diffraction (Vector mesons)
- \rightarrow Leading protons with Roman pots (e.g. t dist'ns)
- \rightarrow Photoproduction
- \rightarrow Fragmentation functions

Plans to meet again before next workshop (DIS'08 plus one before and one after?)

Many important points not covered here \rightarrow see original slides Thanks to all contributors ... It was an education!