A Fast Track Trigger with High Resolution for H1

Paul Newman

Representing the H1 UK Groups (Universities of Birmingham, Lancaster, Liverpool, Manchester, Rutherford Appleton Laboratory, Queen Mary and Westfield College)

- Introduction.
- Physics Motivation for a new Tracking Trigger.
- System Overview.
- Level 1 System.
- Simulated Performance.
- Requests from PPESP.

Trigger Rates after the HERA Upgrade

• HERA upgrade 2000-1 ... factor ~ 5 increase in luminosity. At $\mathcal{L}^{\rm max} \sim 70~\mu \rm b^{-1} s^{-1}$, rates of observable ep interactions:

Kinematic range	Rate [Hz]
$Q^2 <$ 1 ${ m GeV}^2$	1000
$1 < Q^2 <$ 10 ${ m GeV}^2$	40
10 GeV $^2 < Q^2$	4

 \bullet Max input rate to level 4 (filter farm) trigger $\sim 100~Hz$. Without improved selectivity at earlier stages of trigger, prescaling will be necessary:

Q^2	Present	Prescale	Resulting
	Prescale	after Upgrade	Efficiency
0	∞	∞	0%
5	5	25	4%
40	2	10	10%
150	1	1	100%

Most Exclusive Final States at low ${\cal Q}^2$ subject to these prescales

Example Physics Processes

Many measurements crucial to our understanding of QCD dynamics / proton structure . . .

- 1) have low visible cross section.
- 2) do not contain high p_t final states for easy triggering.
- 3) display track based signatures.
- 1) Open charm physics: ($D^* o D^0 \pi_{\mathrm{slow}} o K \pi \pi_{\mathrm{slow}}$)
- Direct $x_g g(x_g)$ via $\gamma^{(\star)} g \to c \bar{c}$
- ullet Charm structure function $F_2^{car c}$
- Gluon distribution of photon, pomeron ...
- ullet Open beauty physics through b o c decays.

Proton gluon density

Stat. errors $\sim 25\%$ from \leq 96 data.

Much better stats and high $p_{\scriptscriptstyle T}(D^*)$ data needed for detailed analysis!

Example Physics Processes

2) Vector meson production:

- $\gamma p \to V p$ calculable in pQCD?
- Novel parton dynamics?
- ullet ho , J/ψ not well measured at high Q^2 , |t|
- Little data so far for ϕ , ρ' , ψ' , Υ ...
- Inelastic J/ψ poorly understood.

3) High $p_{\scriptscriptstyle T}$ Charged Particles

ullet High p_t charged particles almost always interesting . . .

e.g. W, Z (semi)-leptonic decays.

Heavy flavour semi-leptonic decays.

Isolated muons with missing p_t .

ullet FTT accurately measures track $p_{\scriptscriptstyle T}$ at early stages of trigger.

4) Discovery Potential

 Exotic processes can show up as anomalous charged / neutral final state yields . . .

QCD Instantons.

Centauro / Anti-centauro events.

Disoriented chiral condensate (Bjorken).

• FTT can be used in conjunction with calo jet trigger etc.

Example Physics Processes

	1996 DATA	ESTIMATED $97-00$	ESTIMATED 2001++
PROCESS	$13 \mathrm{pb}^{-1}$	$92~{\rm pb}^{-1}$ DELIVERED	$600 \mathrm{pb}^{-1}$
	DELIVERED	(OPTIMISTIC!)	DELIVERED
D^* in DIS ($Q^2>2~{ m GeV}^2$)	583	4100	27000
D^st in DIS FROM b DECAY	(9)	(60)	(420)
D^* in diffractive DIS ($Q^2>2~{ m GeV}^2$)	11	80	510
D^* in γp	788	5500	36000
D^* in γp FROM b DECAY	(13)	(90)	(600)
Elastic $ ho^0 ightarrow \pi^+\pi^-$ ($Q^2>30~{ m GeV^2}$)	16	110	740
Quasi-elastic $J/\psi o \mu^+\mu^-$ ($Q^2>2~{ m GeV}^2$)	156	1100	7200
Quasi-elastic $J/\psi \to e^+e^-$ ($Q^2>2~{ m GeV}^2$)	74	520	3400

Track Triggering in H1

Present H1 track triggering . . .

Loose selection at L1 (DCr ϕ) (Deadtime free $2.3~\mu s$) L4 refinements based on full track rec'n ($800~\mu s$)

• Proposed Fast Track Trigger (FTT) ...

Decisions at L1 (2.3 μs), L2 (25 μs) and L3 ($\lesssim 100 \ \mu s$)

	DCr ϕ	FTT
number of DC layers	10	12
hit resolution	5 mm	500 μ m
$p_{\scriptscriptstyle T}$ range	$\stackrel{>}{_{\sim}} 400~{ m MeV}$	$> 100~{ m MeV}$
track multiplicity	$N_{ m DCr}_{\phi} \propto N_{ m tracks}$	precise
p_t resolution	2 loose thresholds	$\sigma(1/p_{\scriptscriptstyle T}) \sim$
	$400,800~\mathrm{MeV}$	$0.05/{ m GeV}$
z-information	no	yes
topological info.	Limited, $r\phi$ only.	Detailed, 3D
invariant masses	no	yes

The FTT will ...

- Generally improve H1 track triggering capabilities.
- Identify exclusive final states early enough to avoid large prescales.

Principle of the Fast Track Trigger

H1 Central Jet Chambers:

CJC1 - 30 cells in ϕ , 24 layers of sense wires in r

CJC2 - 60 cells in ϕ , 32 layers of sense wires in r

Take signals from four groups of three layers, all cells.

e.g. CJC1: (3,5,7), (10,12,14), (18,20,22), CJC2: (4,6,8).

Advances in integration and speed of electronics and rapidly reducing costs allow . . .

- Detailed drift chamber analysis on-line.
- Identification of complex signatures from track combinations at L1-3.

Specifications at L1-L3

	L1	L2	L3
Latency	$2.3~\mu\mathrm{s}$	$25~\mu\mathrm{s}$	$\lesssim 100 \mu \mathrm{s}$
	Q-t analysis		
Tasks		Track Segment	Event
	Track segment	linking.	rec'n.
	finding		
Data	Coarsely	Tracks	
for	linked	with precisely	Combinations
Trigger	track	determined	of Tracks
Decision	segments	3-momenta	
Basis of	Tracks with	$\operatorname{Track} p_{\scriptscriptstyle T}$	
Trigger	variable $p_{\scriptscriptstyle T}$	multiplicity,	Invariant
Decision	thresholds,	topology	mass sums
	multiplicity, sign?	total E_t	$D^* \Delta M \dots$

H1-UK groups have taken responsibility for the L1 system.

Overview of L1 System

Functionality:

- Analogue CJC signals taken from front of FADC cards.
- Preamp. and 30 8-bit FADCs digitize signals at 80 MHz.
- Q-t algorithm implemented on FPGAs
- Coarse/fine track segment finding done using CAM functionality of the "FPGA farm"
- ullet Track segment data processed o merged $p_{\scriptscriptstyle T}$, ϕ , z-info.

Data Flow Through L1 System

Front End Digitisation and Segment Finding

Implemented in e.g. Altera Apex 20K1000 with $\sim 10^6$ gates.

Finding Valid Masks for Trigger Groups

Track Segment Finding

- Masks defined in shift registers, corresponding to valid track segments in 3 wires of a trigger layer.
- Entries in shift registers corresponding to left-right drift space ambiguity.
- Adjacent cells analysed together to deal with tracks crossing cell boundaries.
- Bunch crossing of origin can be identified where tracks pass on either side of wires or cross cell boundaries.

Determination of ϕ , $p_{_T}$

Assumption of vertex in $r\text{-}\phi$ plane allows ϕ and $p_{\scriptscriptstyle T}$ determination.

Valid track segment masks converted to $(p_{\scriptscriptstyle T}\,,\,\phi)$ values using Look Up Tables

Trigger Group Efficiency ($\varepsilon_{single hit}$ =0.95)

Each trigger group is 3 CJC wires.

High efficiency down to $p_{\scriptscriptstyle T} \sim 100~{\rm MeV}$ in most cases.

Level 1 Trigger Decision

Feasibility study of level 1 trigger decisions in progress. Several possible improvements over existing $DCr\phi$ trigger . . .

- $\bullet \;\; \mbox{Lower} \; \mbox{/ sharper / more flexible} \; p_{\scriptscriptstyle T} \; \mbox{thresholds}.$
- Improved determination of bunch crossing of origin.
- Better track multiplicity / topology information

Pattern match track segments with the same $p_{\scriptscriptstyle T}$, ϕ from up to four radial groups at $20~\rm MHz.$

e.g. 2 out of 4 segment coincidence could define a track.

Level 1 Trigger Viability

First simulation studies promising . . .

Correct number of tracks reconstructed by L1 trigger.

Significant improvement on $\mathsf{DCr}\phi$

Bunch crossing of origin ($\times 96~\mathrm{ns}$) determination . . .

 $p_{\scriptscriptstyle T}-\phi$ track segment pattern matching could be realised using CAMs at marginal hardware costs.

Crucial question will be time constraints

Level 2 Track Segment Linking

Level 2 track linking is performed by pattern matching track segments with the same $p_{\scriptscriptstyle T}$, ϕ from all four radial groups. Achieved using CAMs

- 1. $(p_{\scriptscriptstyle T},\phi)$ vectors loaded into 1 CAM per radial group.
- 2. All track segments loaded into SRAM.
- 3. SRAM contents matched in ($p_{\scriptscriptstyle T}$, ϕ) with each CAM.
- 4. Best match with ≥ 2 coincidences defines track.
- 5. 'Dirty' CAM containing already linked segments vetoes double counting.
- 6. Optimisation procedure in DSP.

Development at an advanced stage (DESY, ETH Zürich).

Level 3 System

- Tracks combined to search for complex final state signatures $(D^*, J/\psi, \rho \dots)$
- L3 reject can be made anytime during $\sim 800~\mu s$ detector readout time.
- Early decision reduces deadtime, allowing more events to be processed.
- With L3 decision after $100~\mu s$, 500~Hz processing costs 5% deadtime.

Software selection to run on commercial processors ...

• 2 PCs enough to trigger on wide range of processes.

Detailed work yet to begin.

FTT Resolution in $p_{_T}$, ϕ , θ

FTT level 1, 2 algorithms have been simulated . . .

Efficiencies, resolutions, robustness studied with real events.

Track resolutions in $1/p_{\scriptscriptstyle T}$, ϕ

(relative to full off-line reconstruction, using 1997 D^* data) . . .

$$\sigma(1/p_{\scriptscriptstyle T}) \sim 0.05 \, {\rm GeV}^{-1}$$
 $\sigma(\phi) \sim 5 \, {\rm mrad}$

Reconstruction of Track θ

 θ calculated from . . .

- ullet z of hits from L1 FTT charge division $[\sigma(z_{
 m hit}) \sim 6~{
 m cm}]$
- ullet z of vertex from L1 MWPC trigger $[\sigma(z_{
 m vtx}) \sim 2.5~{
 m cm}]$

(relative to full off-line reconstruction, using 1997 D^{\ast} data) ...

$$\sigma(\theta) \sim 50 \,\mathrm{mrad}$$

Performance for D^* Events

Open charm usually identified through 'golden' decay channel, $D^* \to D^0 \pi_{\rm slow} \to K \pi \pi_{\rm slow}$.

Selection through cuts on ...

1.
$$M(K\pi) - M(D_{\text{nom}}^0)$$

2.
$$\Delta M = M(K\pi\pi_{\text{slow}}) - M(K\pi)$$

Resolutions evaluated using sample of 1997 D^{*} events.

——— Standard Off-Line Selection

Performance for D^st Events

 D^* finding efficiency studied relative to off-line selection for various cuts on D^0 mass window and $\Delta M.$

Trigger rates estimated for <u>peak</u> post upgrade luminosities by extrapolation from current rates.

80% efficiency achievable with $\lesssim 5~Hz$ peak rate.

Efficiencies $\sim 5\%$ higher for $b \to c \to D^*$.

Transverse Momentum Selectivity

Large rate reductions can be achieved for many physics channels with $p_{\scriptscriptstyle T}$ cuts at level 2.

e.g.
$$\Upsilon$$
, J/ψ , $Z \to l^+ l^-$, $W \to \mu \nu \dots$

Resolution
$$\sigma\left(\frac{1}{p_T}\right) \sim 0.05~{\rm GeV^{-1}}.$$

Fast Track Trigger

Estimated Trigger Efficiencies

	trigger rates		trigger		
	with F	TT [H	z]	efficien	cy [%]
Process	L1	L2	L3	with FTT	without
D* decay (DIS)	160 - 500	30	5	70	1
D^* decay (e -tagged γ p)	120 - 500	25	4	60	1
$ ho o \pi^+ \pi^-$ (DIS)	40	2.5	1	80	2
J/ Ψo ee, $\mu\mu$	50	20	1-3	12-60	1-3
$\Upsilon ightarrow$ ee, $\mu\mu$	50	5	0.5-2	12-60	1-3

UK Commitments to Level 1 System

- 'Plug through' analogue card from CJC FADCs
- Front End Module Design and Construction
- Control software / Interfaces
- L1 Service Module / trigger card
- L1 Trigger algorithm design / simulation
- Monitoring software to compare with CJC readout

Costing of Level 1 System

ITEM	$COST(\pounds)$	EFFORT (Staff Years)	SOURCE OF EFFORT
Analogue Plug-through Card (150)	30k	0.25 + 0.5	RAL + Manchester
Front End Modules (30)	135k	3 + 1	RAL + RAL PPD
Coding segment finding algorithm		2	DESY + Zürich
Crate control processor (2)	10k		
Control software and Interfaces		0.75 + 0.25	RAL + Manchester
Service Module / trigger card (2)	10k	1	Birmingham + Manchester
Compact PCI Crates (2)	20k		
Cabling	10k		
Workstation and Interfaces	5k		
Trigger algorithms / simulation		2.5	Birmingham + Zürich
Monitoring Software		1.25	UK Universities
Total (incl. VAT @ 17.5 %)	260k	4 + 8.5	

Items in red are requests from PPESP.

Funding Model

Total project (L1-3) costed at DM 1950

EQUIPMENT COSTS			
DESY	250k	Approved	
Dortmund	310k	Approved	
ETH Zürich	550k	Seeking approval	
Cracow	70k	Seeking approval	
UK	770k	This request	

4 Staff Years of effort are requested from RAL-ID.

Other physicist and technical effort ...

STAFF YEAR ALLOCATIONS	
DESY	3 SY
Dortmund	8 SY
ETH Zürich	4 SY
Cracow	2 SY
UK	6 SY

Time Schedules for Level 1 System

Fully commissioned system by end 2001 gives ≥ 5 years run-time.

FRONT END MODULE		
Preliminary design report	now - 03/00	
First design	03/00 - 06/00	
Board layout	06/00 - 12/00	
Prototype manufacture	12/00 - 01/01	
Debug / testing prototype	01/01 - 03/01	
Installation of prototype at H1	before 03/01 *	
Redesign and layout	04/01 - 06/01	
Main production	06/01 - 12/01	

^{*} end of HERA shutdown is planned for 03/01

OTHER MILESTONES		
Segment finding algorithm Finalised	before 04/00	
Segment finding programmed on FPGAs	before 03/01 *	
L1 trigger viability studies	now - 03/00	
L1 trigger algorithm design	03/00 - 11/00	
Service Module design, build, test	before 02/01	
Installation of Service Module	before 03/01 st	
Installation of Analogue Plug through cards	before 03/01 *	
First version of Control Software	before 03/01 *	
Full System Operational	before 12/01	

Summary and Status

- HERA Upgrade presents unique opportunities in QCD / low x Physics.
- FTT will allow H1 to exploit these possibilities in full.
- Trigger selectivity will be improved for many other processes.
- Simulations show that very high performance device is possible.
- Physics benefits recognised by DESY directorate → Approval from DESY PRC.
- L2-3 Resource approval obtained at DESY / German Universities, being sought in Switzerland, Poland.
- H1-UK groups request $\pounds 260k$ plus 4 staff years from RAL-ID for construction of L1 system.