<u>"There is Diffraction at HERA-2"</u>

Paul Newman, Birmingham University

- What have we Learned at HERA-1?
- What Limits our Understanding?
- Do we Have the Necessary Triggers FOR HERA-2?
- Wish List for HERA-2?

Overview of Diffractive Phase Space

$$\begin{aligned} x_{\mathbb{IP}} &= \frac{q \cdot (p - Y)}{q \cdot p} = x_{\mathbb{IP}/p} \\ \beta &= \frac{Q^2}{q \cdot (p - Y)} = x_{q/\mathbb{IP}} \end{aligned}$$

All five kinematic variables can be measured:

- $Q^2 \sim 0, |t| \sim 0. \rightarrow \text{similar to soft hadronic diffraction.}$
- Large Q^2 . \rightarrow pQCD at $\gamma^* \mathbb{P}$ vertex. γ^* 'probes' \mathbb{P} ?
- Other scales \rightarrow Jets, heavy quarks \rightarrow pQCD, gluon in ${\rm I\!P}$
- Large |t|. $\rightarrow \mathbb{P}$ itself calculable in pQCD?

Factorisation in Diffractive DIS

QCD Hard Scattering Fac'n for Diffractive DIS:-

(Trentadue, Veneziano, Berera, Soper, Collins ...) Diffractive parton distributions $f(x_{I\!P}, t, x, \mu^2)$ can be defined, expressing proton parton probability distributions with intact final state proton at particular $x_{I\!P}, t \dots$

$$\sigma(\gamma^* p \to Xp) \sim \sum_i f_{i/p}(x_{\mathbb{I}}, t, x, Q^2) \otimes \hat{\sigma}_{\gamma^* i}(x, Q^2)$$

At fixed $x_{\mathbb{I}}$, t, diffractive partons evolve in x, Q^2 according to DGLAP equations.

Regge Factorisation:-

Soft hadron phenomenology suggests a universal *pomeron* (IP) exchange can be introduced, with flux dependent only on x_{IP} , *t* (Donnachie, Landshoff, Ingelman, Schlein, H1 ...)

QCD and Regge Factorisation

 F_2^D data consistent with universal $x_{I\!P}$ dependence. Regge factorisation hypothesis approximately valid. Pomeron parton distributions extracted from F_2^D .

BUT! . . .

- $x_{\mathbb{IP}}$ dependence stronger than soft hadronic diffraction. (also for VM at large m_V, Q^2)
- Sub-leading exchanges are also present (interference?)
- Need full DGLAP analysis at fixed small x_{IP} to avoid ^{1.15} Regge factorisation assumption _{1.05}

- Best fit gluon
- Best fit light quarks

All such fits suggest heavy gluon dominance with significant high x contributions.

Shape at high x v. poorly determined.

Dipole Models

 $\gamma^* \rightarrow q\bar{q}, q\bar{q}g$ well in advance of target ... Partonic fluctuations scatter elastically from proton.

- Cross section for colour dipole to scatter from proton
- <u>Nice feature:</u> clear relationship between σ_{tot} , σ_{el} and σ_{dif} via optical theorem

Different approaches to the dipole cross section:

• Soft Colour: e.g. Buchmüller et al.

Х

• Perturbative: a pair of gluons from proton pdf's with opposite colour charge.

Applicability of Perturbative approach:

Expected to work for small size dipole configurations . . . Vector mesons, high p_T dijets, charm . . .

More quesionable at low β in F_2^D

 $\dots x_{I\!\!P}$ factorisation breaking?

Successes for 2-gluon exchange Models

2-gluon models broadly successful where easily applied

2-gluon Models and F_2^D

More tricky! ... But reasonable consensus on what's needed

High β:	$\gamma_L^* \to q\bar{q}$
Intermediate β :	$\gamma_T^* \to q\bar{q}$
Low β :	$\gamma_T^* \to q\bar{q}g$

e.g. 'Saturation' Model (Golec-Biernat & Wüsthoff)

Serious attempt to calculate F_2^D including all 3 components

Free parameters in σ (dipole) fixed by fits to $F_2(x, Q^2)$

Diffractive cross section calculated (2 gluon exchange instead of 1) with only 1 extra parameter (t slope)

Impressive agreement with F_2^D data.

Can the Data Distinguish Between Models?

Most models formulated to describe existing F_2^D data

How Do the Models Fit Together?

Rapidly evolving field, both theoretically and experimentally

1992 Litt	le theory, no data.
-----------	---------------------

- 1993-00 Loads of data from HERA-1
- 1994 ...Theory catching up!

No sign of theoretical activity diminishing

Models likely to improve considerably before HERA-2 data analysed.

Improved data will be needed!

What Limits our Understanding?

1) Statistics

 F_2^D systematically limited for $Q^2 \lesssim 100 \text{ GeV}^2$? after HERA-1 Many exclusive final states remain statistically limited. e.g. D^* Vector meson channels statistically limited for high Q^2 of |t|

PROCESS	HERA-1 (100 pb^{-1})	HERA-2 ($1 { m fb}^{-1}$)
Elastic $ ho^0$ ($Q^2>20~{ m GeV}^2$)	1000	10000
Elastic ϕ ($Q^2>20~{ m GeV}^2$)	125	1250
Elastic J/ψ ($Q^2>20~{ m GeV}^2$)	140	1400
Elastic Υ (all Q^2)	50	500
Diffractive D^* ($Q^2>10~{ m GeV}^2$)	100 (H1)	1000

Essential to efficiently trigger data for 'rare' processes!

What Limits our Understanding?

2) Experimental Systematics

e.g. Approximate systematics break-down for F_2^D

SOURCE	SYSTEMATIC UNCERTAINTY
Inclusive Kinematics	$\sim 3\%$
M_X Measurement	$\sim 4\%$
Acceptance / migration corrections	$\sim 4\%$
Correction to $M_Y< 1.6~{ m GeV}$, $ t < 1~{ m GeV}^2$	$\sim 10\%$

Rapgap selection method gives dominant systematics due to:

- Poorly constrained Forward detector efficiencies
- Poorly known *t* distribution
- Poorly known proton dissociation normⁿ, M_Y dependence

3) Model Comparisons

Unknown *t* dependence can make model comparisons hard.

e.g. Normalisation of dipole models highly sensitive $\sim 1/B$

Direct tagging of leading protons would improve matters enormously

Can we Trigger the Data

Fast Track Trigger: Trigger signals derived from selected CJC wires ...

Efficient on-line (L2-3) identification of D^* , ρ , ϕ , J/ψ , Υ should be available from 2002.

Jet Trigger: Lower thresholds possible

Can SPACAL \times jet trigger be used for dijets with $p_T > 5$ GeV?

Can LAr-IF be used for a rapidity gap based trigger?

Other Channels: e.g. inclusive diffraction

May be problematic until we can trigger on leading protons ...

Very Forward Proton Spectrometer

Roman pots near z = 200 m from 2002 shutdown ...

• High acceptance for low $x_{I\!P}$ to lowest |t| allowing precision studies of $ep \to eXp$

 $x_{IP}\,F_2{}^{D(3)}$ at Q^2 = 8.5 GeV $^2,\,\beta$ =0.2

• Large reductions in systematics relative to present 'rapidity gap' selection.

- 3 years' data (360 pb^{-1}) expected.
- Collect high statistics for all proton elastic channels
- Measure *t* dependences.

Trigger is planned at L1/2 - will hopefully become the main means of triggering diffraction

VFPS Acceptance

0.5

Wish List 1 - t Measurements

Constraints on t dependences needed because:-

- Dipole / 2 gluon exchange calculations yield $\left\{ \frac{d\sigma}{dt} \right\}_{t=0}$
- We measure $\int_{-1 \text{ GeV}^2}^{t_{min}} \frac{\mathrm{d}\sigma}{\mathrm{d}t} \,\mathrm{d}t$
- We will never be able to fully test validity of QCD models until *t* dependence is extracted experimentally.
- Variation of t slope with other variables $(x_{\mathbb{IP}}, W...)$ contains important dynamical information $(\alpha', \text{shrinkage})$
- Can we measure $B(\beta, Q^2, x_{I\!\!P})$?

For VM, extract t from p_T of decay products.

For photon dissociation, need to measure p_T of proton.

Existing FPS-V (81, 90 m) should give smallest systematics on t measurement, but limited acceptance

<u>VFPS</u> will give 3-4 bins for $0 < |t| < 0.6 \text{ GeV}^2$. Calibration systematic on *t* slope ~ 10%?

Wish List 2 - Longitudinal Cross Sections

- σ_L probably dominates diffraction for high β
- VM data already show this (decay angular distributions)
- $F_L^D(\beta, Q^2, x_{\mathbb{IP}})$ would be a fundamental test of QCD factorisation in diffraction (gluon at NLO)

3 methods proposed, no results yet!

1) Measure $\sigma(\beta,Q^2)$, vary y by changing $x_{I\!\!P}$

Needs ~ 10% precision for y > 0.7

Requires Regge factorisation assumption and full understanding of sub-leading ${\rm I\!R}$

2) Vary beam energies

Many possible scenarios, changing E_e may be better

In this example, statistical and systematic errors comparable with 50 pb⁻¹ at $E_p = 500$ GeV. R^D measured to 40%.

Can be done without VFPS. - Rapgap selection is enough.

With VFPS, could try to measure t dependence too.

3) Azimuthal Correlations

Interference between transverse and longitudinal photon induced processes leads to modulation in $\cos \phi_{ep}$.

Predicted ~ 20% for $\beta > 0.8$.

VFPS expect to measure $\cos\phi_{ep}$ in 4-5 bins.

Wish List 3 - Diffractive Open Charm

- Important probe of gluon, complementary to dijets
- Important to resolve apparent H1 / ZEUS differences
- The only channel that currently shows deviations from 'Resolved pomeron' model
- With FTT, we can expect high trigger efficiency from 2002
- Would be nice to measure $F_2^{D(4),c\bar{c}}(\beta,Q^2,x_{I\!\!P},t)$

- Unlikely ever to see more than double differential distributions at low x_{IP}
- Still a very powerful measurment!
- Worth looking at silicon vertex distribions, other decay channels / inclusive muons ...

Wish List 4 - Diffractive Dijets

DIS dijets already proved highly sensitive to diffractive gluon distribution. High power to distinguish between models.

Improved stats at low $x_{I\!P}$ would remove many remaining uncertainties.

 $z_{IP}^{(\text{pers})}$ t measurement crucial for QCD dipole model comparisons (VFPS expects 10k events)

Theoretical predictions most reliable for *exclusive* $q\bar{q}$ (high $z_{\rm TP}$)

e.g. Azimuthal correlation between jet and lepton scattering planes differentiates between BGF and 2-gluon exchange. Distinguish at 4σ level with 10% measurement in 7 ϕ bins $\rightarrow 250 \text{ pb}^{-1}$.

Wish List 4 - Diffractive Dijets

Diffractive QCD factorisation fails badly at the Tevatron Is underlying event / remnant reinteractions the reason? Diffractive dijet photoproduction provides a control experiment Photon interactions with and without remnants

 $\frac{\text{RESOLVED}}{x_{\gamma}^{\text{jets}}} < 1$ Some gaps

destroyed?

Description based on diffractive partons improved by suppressing resolved interactions by 'gap survival probability' of 0.6

Use Jet Trigger? VFPS expects 60k events Modelling uncertainties

Wish List 5 - Vector Mesons

Many vector meson measurements remain statistically limited

- <u>Gluon</u>: With better understanding, could be highly competitive constraint on gluon in proton
- High |t|: Should be measured as differentially as possible
- $\underline{\Upsilon}$: Important to compare to J/ψ W dependence even stronger in QCD models
- SCHC breaking: Detailed dependence on Q², t needed for comparisons with QCD models.

Wish List 6 - DVCS

First data showed that pQCD model basically works.

At HERA-2, should have programme

to extract skewed parton densities.

Will improve many diffractive predictions.

VFPS has high acceptance at low W, where BH interference smallest

Wish List 7 - Proton Dissociation

P-diss channels poorly measured so far. ...6 Some surprises! $\sigma(PD)/\sigma(EL)$ & for ρ seems to show strong Regge factorisation breaking! PD:EL ratio can be measured from differences between VFPS and 0.2 rapidity gap cross sections

Wish List 8 - Rapgaps between Jets

Parton level

Elastic parton-parton scattering in Regge limit ($\hat{s} \gg \hat{t}$), yet pQCD calculable (\hat{t} large)? ... BFKL?

<u>Hadron level</u> Classic experimental signature is rapidity gap between high $p_{\scriptscriptstyle T}$ jets. $|\hat{t}|\sim p_{t,jet}^2$

Gap fraction at large $\Delta\eta$ significantly larger than Tevatron $p\bar{p}$.

Calculation based on BFKL pomeron can describe data.

Summary

In answer to the Physics Coordinator's Questions ...

- "What is the Physics Potential for HERA-2?" Most areas of Diffraction still on Wish List.
- "Which Data Sets Do we Want Until 2005/6? (e^+e^- higher or lower energy)"

 e^+e^- makes no difference.

Big diffractive interest in lower energy running.

Large lumi needed for F_L^D .

 "What Should be our Emphasis in Trigger Conditions / Special Runs?"

Make sure we trigger D^* , vector mesons with FTT.

VFPS will trigger most low |t| elastic protons.

Jet trigger possibilities to be investigated?

 "What are our Limiting Systematics? Do we need Special Efforts to Reduce them?"

> Forward detectors, unknown *t* distributions VFPS should address both problems Work on fwd dets for rapgap method also needed.

There is very definitely diffraction at HERA-2! ...