HERA Status Report, November 2000

Paul Newman, Birmingham University

- HERA-1 Performance
- HERA-1 Physics Results
- Upgrade Projects
- Physics at HERA-2

HERA Performance

HERA running near to design parameters in 2000

Design $I_p=150~\mathrm{mA}$ Design $I_e=58~\mathrm{mA}$ 65% electron polarisation achieved.

Design peak luminosity

$$1.5 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$$

 $67 \,\mathrm{pb^{-1}}$ delivered in 8 months in 2000.

Design was 35 pb^{-1} per year

HERA operation efficiency 57%

H1 / ZEUS typically use 70% for analysis.

Final HERA-1 Samples

ZEUS

Physics Luminosity 1994 – 2000 70 99-00 e⁺ 70 60 40 20 98-99 e⁻ Days of running

 e^+p : $\sim 120 \, {\rm pb}^{-1}$ for H1/ZEUS

 e^-p : ~ 16 pb⁻¹ for H1 / ZEUS

Special samples (e.g. SV) to study low Q^2 / transition to photoproduction

Successful longitudinal polarisation achieved for HERMES in 2000

H1

Hermes Running 1996-2000

Highlights from HERA-1

H1 / ZEUS have \sim 180 papers published in refereed journals.

64 NEW Preliminary Results presented at ICHEP2000.

Lots more results expected from HERA-1 data.

Some Highlights so far ...

- Competitive limits on leptoquarks, R_p -SUSY, l^* , contact intⁿs, large extra dimensions from almost all HERA-1 data.
- $\sigma(CC)$ & $\sigma(NC)$ from almost all e^+p , e^-p HERA-1 data.
- ullet Measurements of $xF_3(x,Q^2)$ γ^*Z interference
- ullet Extractions of F_L at low x
- Determination of M_W in space-like region
- Flavour decomposition e.g. $xu_v(x)$, $xd_v(x)$ from CC data.
- Measurements of charm structure function F_2^c
- Dijet Cross Sections in both CC and NC
- Diffractive F_2^D and final state data \to structure of ${\rm I\!P}$
- Real and virtual photon structure.
- Final state searches for novel QCD dynamics (e.g. BFKL).

Precision F_2 Data

regions.

Gluon and $lpha_s$ from Inclusive Data

Simultaneous extraction of α_s and $xg(x,Q^2)$

NLO DGLAP analysis of H1 data with $1.5 \le Q^2 \le 3000 \text{ GeV}^2$ (1994-7) and BCDMS high x data.

Full correlated error treatment.

$$\alpha_s(M_Z^2) = 0.1150 \pm 0.0017 \text{ (exp.)} ^{+0.0011}_{-0.0012} \text{ (model)}$$

Additional uncertainty ~ 0.005 (renormalisation & factorisation scales) - will decrease when NNLO formulae available.

QCD Tests in the Final State

Hadronic Final State analyses \rightarrow

- Consistency checks with extractions from DGLAP fits.
- Tests of QCD Factorisation Theorem.

e.g. Final states containing charm or dijets are sensitive to $xg(x,Q^2)$ and α_s through Boson Gluon Fusion.

ZEUS Preliminary 1996-97

Measured from D^* and semi-leptonic decays.

Dotted lines show uncertainty from m_c

Increasingly precise data, but much more needed for detailed tests of theory.

High Q^2 Cross Sections

NC, CC e^+ , e^- Cross Sections measured with almost all pre-upgrade data.

Nice illustration of electroweak unification at high Q^2

Tantalising signals

• No evidence for high Q^2 excess (1994-6 data) in 1997-2000 data \rightarrow attributed to statistical fluctuation.

 \bullet In e^+p , H1 observe isolated leptons with missing $p_{\scriptscriptstyle T}$ (W signature) appearing faster than expected at high $p_{\scriptscriptstyle T}$ of hadronic recoil.

H1 94-00	H1 Prelim	Standard
e^+p 82 pb^{-1}	Data	Model
Preliminary	$(e + \mu)$	Expectation
$P_T^X > 0 \; \mathrm{GeV}$	14	8.16 ± 1.97
$P_T^X > 12 \mathrm{GeV}$	12	4.07 ± 1.03
$P_T^X > 25 \mathrm{GeV}$	9	2.26 ± 0.57
$P_T^X > 40 \mathrm{GeV}$	6	0.79 ± 0.22

No events found in 13.6 ${\rm pb}^{-1}$ of e^-p data.

ZEUS data in this channel consistent with Standard Model.

HERA Status and Plans

Summary of Schedule

September 2000: Shutdown began

May 2001: Restart with beam - technical tests

August 2001: Colliding beams - tests

November 2001: Production lumi (expect $\sim 30 \text{ pb}^{-1}$ in 2001)

Superconducting magnets to reduce β of intersections at H1 /

ZEUS made at Brookhaven

Two undergoing tests at DESY

Two still to be delivered

SC magnet schedule tight but not yet critical.

Experiments currently on target to meet schedule.

Longer Term Plans (speculative)

2002-2005: One year for each of e^+ , e^- left / right handed.

2006 . . . Deuterons / heavy ions?

ZEUS Upgrade Projects

Main UK Involovement in Silicon Microvertex Detector (MVD)

- Secondary vertices for HF tagging
- Improved track resolution / acceptance
- Improved triggering (global track trigger)

H1 Upgrade Projects

Main UK Projects are Forward Tracker and Fast Track Trigger

Forward Tracker: more planar chambers \rightarrow

- > 90% reconstruction efficiency in very messy environment
- Electrons and hadrons in very high x events
- Charm at high x, Forward Jets . . .

Track Trigger Upgrade: selected Central Jet Chamber wires ightarrow

- \bullet Much improved track $p_{\scriptscriptstyle T}$ thresholding / multiplicity, topology information at trigger L1-3
- Resonance searches (eg $D^* \to K\pi\pi_{\rm slow}$) inside $100~\mu {
 m s}$

Physics at HERA-2

Luminosity to increase by factor of 5

- ullet Much improved precision on high x, Q^2 cross sections.
- Improved measurements of statistically limited exclusive channels at low x.
- Studies of electroweak sector reach maturity (e.g. $\Delta M_W \sim 80~{
 m MeV}$ after 1 year.)
- Completely new areas . . . , polarisation, b sector . . .
- Full Flavour Decomposition of Structure Functions
- Improved limits from searches

Examples of HERA-2 Physics Potential

Compare e^+ , $e^ \sigma(NC) \rightarrow$

Much improved xF_3 data (Z^0)

Vary beam energies →

Much improved F_L data (gluon)

DGLAP fits to precision data

at all
$$Q^2 \rightarrow$$

e.g.
$$\frac{\Delta[xg(x)]}{xg(x)} \sim 3\%$$

Precision charm physics as tool for QCD tests.

Sensitivity to beauty contribution to F_2

Lepton Polarisation at HERA

50-60% pol'n routinely achieved for HERMES (40 min rise time)

 \rightarrow spin structure functions, polarised quark distributions.

Spin rotators to be installed for H1 / ZEUS.

Upgrades to TPOL, LPOL polarimeters.

1% polarisation precision expected post upgrade (4% so far).

Physics with Polarised Leptons

Chiral structure of Standard Model results in strong polarisation dependence of CC & NC cross sections where W and Z exchanged.

Run with left and right polarised e^+ and e^-

- Turn SM processes off to enhance search sensitivity e.g. RH CC exclusion limit $M_W(R) > 400 \, {\rm GeV}$ (1 year).
- u and d quark vector and axial vector couplings e.g. estimated precision with $250~{\rm pb^{-1}}$ for each of $e_{L,R}^{\pm}$ $\Delta v_u \sim 13\%$ $\Delta a_u \sim 6\%$ $\Delta v_d \sim 17\%$ $\Delta a_d \sim 17\%$

Low \boldsymbol{x} Physics at HERA-2

Many final state analyses still highly statistically limited.

e.g. HF channels, vector mesons, inclusive diffraction . . .

Not possible to take all low x data at HERA-2

ep physics rate > 1 kHz

Crucial to trigger e.g. D^* , J/ψ efficiently!

→ ZEUS track trigger with CTD / MVD, H1 FTT

Diffractive data limited by 'Rapidity Gap' Selection method.

→ H1 Very Forward Proton Spectrometer

• High acceptance allowing precision studies of $ep \rightarrow eXp$ at HERA-2.

Summary

- HERA-1 was highly successful
 - Spectacular machine perfomance in 1999-2000
 - Many significant phyics contributions made
 - Lots more results expected in near future
- Accelerator and experiments on schedule for HERA-2
 - Many exciting upgrade projects
 - Looking forward to high precision at high Q^2 and $p_{\scriptscriptstyle T}$
 - Polarised leptons add a new dimension
 - Final state measurements at low x still require more data to develop full understanding of QCD