Inclusive Diffraction at HERA

Paul Newman, Birmingham University representing the H1 and ZEUS Collaborations.

- Diffraction at HERA.
- The Diffractive Structure Function $F_2^{D(3)}$ at Low Q^2 .
- Rapidity Gaps Between High p_T Jets in Photoproduction.

Diffraction at HERA

At HERA, diffractive $\gamma^{(\star)}p$ interactions can be studied \ldots

All five kinematic variables can be measured:

- $Q^2 \sim 0, |t| \sim 0. \rightarrow \text{similar to soft hadronic diffraction.}$
- Large Q^2 . \rightarrow pQCD at $\gamma^* \mathbb{P}$ vertex. γ^* 'probes' \mathbb{P} ?
- Large $|t| \rightarrow \mathbb{P}$ itself calculable in pQCD?

... All regions interesting - transitions particularly revealing?

Diffraction of Virtual Photons, $\gamma^\star p o Xp$

$$x_{{\hspace{-.1em}I\hspace{-.1em}P}}=rac{q_{\,\cdot}(p-p')}{q_{\,\cdot}p}=x_{{\hspace{-.1em}I\hspace{-.1em}P}/p}$$

$$\beta = \frac{Q^2}{q.(p-p')} = x_{q/\mathbb{I}^2}$$

 $(x=x_{\rm I\!P}\beta)$

Data presented as a Diffractive Structure Function ...

 $F_2^{D(3)}(\beta, Q^2, x_{I\!\!P})$

₭ H1 95-7 Prelim $)^{2}/GeV^{2}$ N1 94 **ZEUS 94** H1 95 Prelim US 95 LPS Prelim ZEUS 95-7 Prelim 10 1 HERA F_2^D coverage 10 10⁻³ 10⁻² 10 -1 ß

New ZEUS BPC data $(0.2 < Q^2 < 0.7 \, \text{GeV}^2)$ start to fill transition to photoproduction.

<u>Method 1:</u> Decompose observed M_X distribution.

Method 2: Measure leading proton in LPS.

$x_{{I\!\!P}}$ Dependence of $F_2^{D(3)}$ at low Q^2

Diff. structure function $F_2^{D(3)}(\beta, Q^2, x_{I\!\!P})$ for $M_Y \lesssim 6 \text{ GeV}$

By comparing M_X decomposition and LPS methods ...

P-dissociation contribution = $29 \pm 15 \; ({
m stat.}) \; \%$

In Regge pole models, $a=\langle 2\alpha_{\rm I\!P}(t)-1\rangle\ldots$

 $\langle \alpha_{\rm IP}(t) \rangle = 1.126 \pm 0.012 \; ({\rm stat.}) \; {}^{+0.027}_{-0.032} \; ({\rm syst.})$

Variation of Energy Dependence with Q^2

Expressed through Regge parameterisations ...

 $x_{I\!\!P} F_2^D \sim A(\beta, Q^2) \ x^{2-2 \left< \alpha_{\rm I\!P} \left(t \right) \right>}$

 $F_2 \sim B(Q^2) x^{1-lpha} \mathbb{P}^{(0)}$

Effective pomeron intercept $\alpha_{\rm I\!P}(0),$ corrected for finite $t\ldots$

Also From LPS, $\alpha_{\mathbb{IP}}(0) = 1.18 \pm 0.06 \text{ (stat.)} ^{+0.06}_{-0.09} \text{ (syst.)}$ At low Q^2 , diffractive and inclusive $\alpha_{\mathbb{IP}}(0)$ compatible.

At higher Q^2 , diffractive and inclusive $\alpha_{\mathbb{IP}}(0)$ incompatible. (Energy dependences of diff & incl become more similar at high Q^2 .)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rising scaling violations over large range of Q^2 up to large fractional momenta (β)

DGLAP analysis yields IP parton distributions dominated by "hard" gluons.

0.9

'Saturation' Model (Golec-Biernat & Wüsthoff)

Describes $Q^2 \rightarrow 0$ transition in F_2 and Q^2 dependence of diff, incl $\alpha_{\mathbb{IP}}(0)$. No new free parameters for diffraction! Good agreement with high Q^2 diff data. Diff'n of $\gamma^* \rightarrow q\bar{q}g$ dominates at low β . Applicability of present $q\bar{q}g$ model questionable at low Q^2 .

Qualitative features of transition described.

ZEUS 1994

Rapidity Gaps between Jets at $Q^2=0$

Parton level

Elastic parton-parton scattering in Regge limit ($\hat{s} \gg \hat{t}$), yet pQCD calculable (\hat{t} large)? ... BFKL?

<u>Hadron level</u> Classic experimental signature is rapidity gap between high $p_{_T}$ jets. $|\hat{t}|\sim p_{t,jet}^2$

Complication: Remnant-remnant interactions produce hadronic activity between jets?

New Measurement Method:

Require two central jets (inclusive k_t clustering algorithm):

 $E_t^1 > 6 \text{ GeV}$ $E_t^2 > 5 \text{ GeV}$ $\Delta \eta > 2.5$

Vary E_t^{cut} to study effect of spectator interactions.

Dependence of Gap Fraction on E_t^{cut}

f = Fraction of events with $E_t^{jets} < E_t^{cut}$ ($\Delta \eta > 2.5$)

pQCD treatment of spectator interactions possible at large E_t^{cut} ?

Models with standard γp matrix elements and multiple interactions (HERWIG + JIMMY, PYTHIA) underestimate fModels with high |t| colour singlet exchange more successful HERWIG + JIMMY + BFKL: LO BFKL <u>calculation</u> of $qq \rightarrow qq$ $(q, g \text{ couplings. - } \alpha_s = 0.17).$

PYTHIA + ($\gamma \times 1200$): $qq \rightarrow qq$ through γ exchange. (q coupling only - <u>tuned</u> to data).

Tuning of multiple interactions still required!

Dependence of Gap Fraction on $\Delta\eta$

Dependence on jet separation $\Delta\eta$ particularly sensitive to dynamics.

Measured for various E_t^{cut} , 1 GeV chosen here.

Clear signal above standard γp models, increases with $\Delta \eta$ Gap fraction at large $\Delta \eta$ significantly larger than Tevatron $p\bar{p}$. Both models simulating colour singlet exchange describe data.

q, g composition of proton changes with x

 x_p^{jets} dependence of f sensitive to q, g couplings of exchange.

Clear signal above standard γp models at all x_p^{jets} . PYHTIA + γ differs in shape from HERWIG + BFKL. Data favour some *g* coupling to exchange? - Improved statistics needed!

Summary

- New data in two previously unexplored regions ...
- F_2^D data for $0.2 < Q^2 < 0.7 \, {
 m GeV^2}$:
 - Effective ${\rm I\!P}$ intercept significantly larger than soft ${\rm I\!P}$ at high Q^2 .
 - Energy dependence of $\sigma^{\rm diff}/\sigma^{\rm incl}$ consistent with simple Regge prediction at low Q^2 .
 - Transition $Q^2
 ightarrow 0$ qualitatively similar to inclusive F_2
- Rapidity Gaps between Jets in Photoproduction:
 - Clear signal for colour singlet exchange at high |t|.
 - Good treatment of spectator interactions is crucial.
 - Sensitivity to q, g couplings of colour singlet exchange.