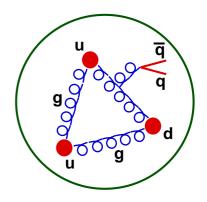
Diffractive Deep-Inelastic Scattering

Paul Newman

Birmingham University, H1 Collaboration.

Contents:

- Strong Interactions and Diffraction.
- The Diffractive Structure Function $F_2^{D(3)}$.
- Regge models of $F_2^{D(3)}$.
- QCD models of $F_2^{D(3)}$.
- Diffractive Final States.
- Leading Baryon Measurements.

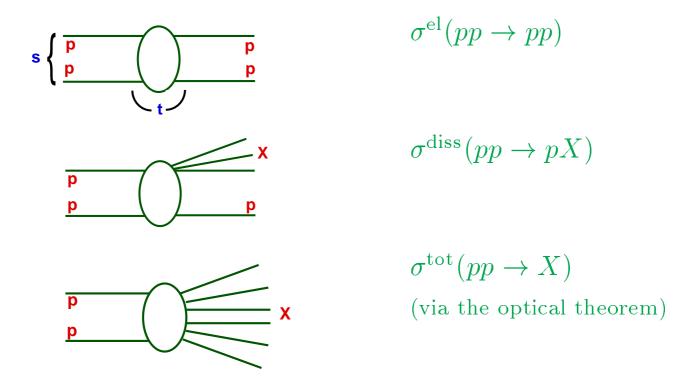

Related topics not covered here:

- Diffractive photoproduction.
- Vector meson production.
- Total $\gamma^{(\star)}p$ Cross Sections.

Strong Interactions in the Standard Model

Modern Picture of Hadrons and Their Interactions:

- Parton Model (e.g. proton = uud)
- SU(3) Gauge Theory, QCD

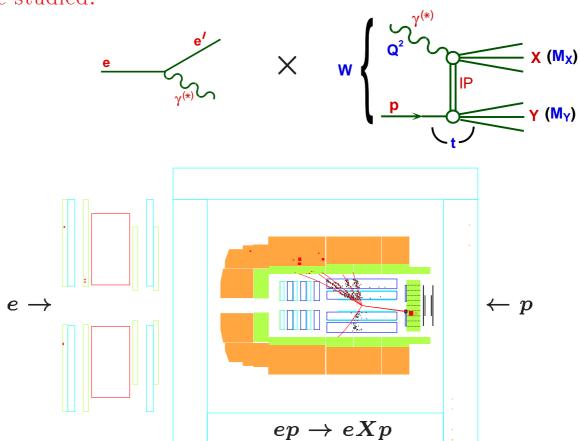

- 1) "Hard" Interactions (< 1% of hadronic cross sections)
 - α_s small: "Asymptotic Freedom".
 - Well understood within perturbative QCD.
- 2) "Soft" Interactions (> 99% of hadronic cross sections)
 - α_s large: "Infrared Slavery".
 - Poorly understood within QCD.
 - Many years of "Regge" Phenomenology.

Understanding Soft Hadronic Interactions in terms of QCD is a major challenge to the Standard Model.

In 'diffractive' Deep-Inelastic Scattering, the interface between 'soft' and 'hard' strong interactions is studied.

Diffractive Processes and the Pomeron

Soft diffraction: elastic, total and dissociation cross sections.

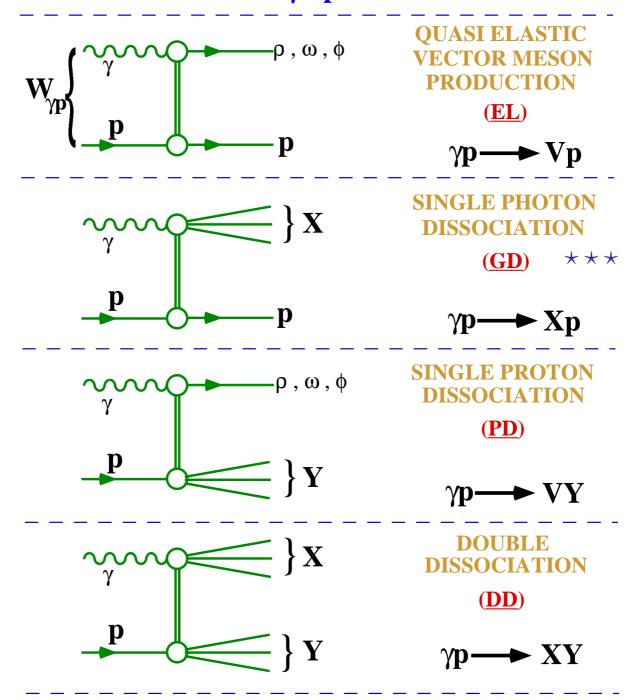


It is useful to think in terms of the exchange of an object with net vacuum quantum numbers - the "pomeron" (IP).

- $\alpha_{\mathbb{P}}(t) \simeq 1.081 + 0.26t$
- 'FACTORISES!' Describes the energy dependence of all such hadron-hadron cross sections where $s \gg t$.
- BUT The partonic structure of the interaction remains an enigma!

The Advantages of HERA for Diffraction

At the HERA ep collider, diffractive $\gamma^{(\star)}p$ interactions can be studied.



All five kinematic variables can be measured:

- $Q^2 \sim 0$, $|t| \sim 0$. \rightarrow soft physics, soft pomeron.
- Large Q^2 . $\to \gamma^*$ probes IP structure. $\star \star \star$
- Large |t|. \rightarrow search for perturbative (BFKL?) \mathbb{P} .

 \dots the non-perturbative \leftrightarrow perturbative transition.

COLOUR SINGLET EXCHANGE PROCESSES IN γ^* -p INTERACTIONS

Kinematics of the Process $\gamma^* p \to Xp$

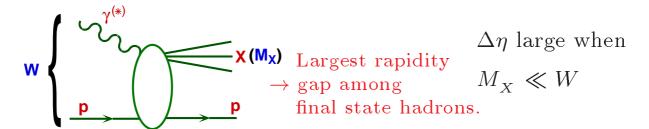
$$\begin{array}{c|c} \mathbf{W} & & & & & \\ \mathbf{Q}^2 & & & & & \\ \mathbf{p} & & & \\ \mathbf{p} & & & & \\ \mathbf{p} & & \\$$

- $Q^2 = -q^2$ (Photon virtuality)
- $W^2 = (q+p)^2$ $(\gamma^* p \text{ centre of mass energy})$
- $M_X^2 = X^2$ (Invariant mass of X)
- $t = (p p')^2$ (4-momentum transfer squared)

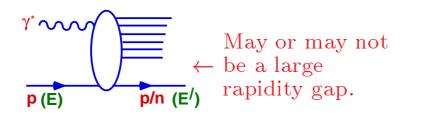
Long distance physics at p - vertex:

$$x_{I\!\!P} = {q \cdot (p - p') \over q \cdot p} \simeq {Q^2 + M_X^2 \over Q^2 + W^2} = x_{I\!\!P/p}$$

 \rightarrow Fraction of p momentum transferred to IP.

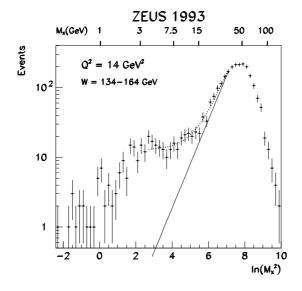

Short distance physics at γ^* - vertex:

$$\beta = \frac{Q^2}{q \cdot (p - p')} \simeq \frac{Q^2}{Q^2 + M_X^2} = x_{q/\mathbb{IP}}$$


 \rightarrow Frac. of IP momentum carried by quark coupling to γ^* .

Experimental Techniques

1. Rapidity Gap Selections (H1, ZEUS).



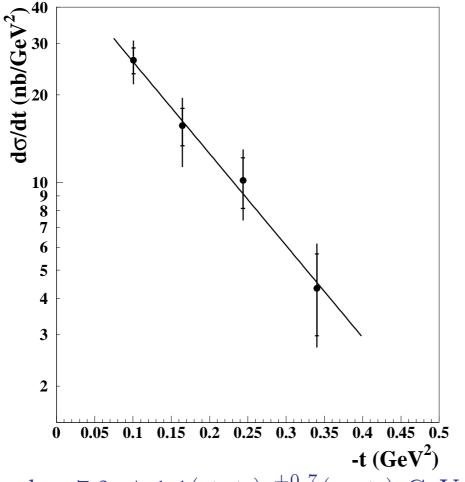
2. Direct Tagging of Leading Baryons (H1, ZEUS).

 $x_{\mathbb{P}} = E'/E$ if exclusive p / nat proton vertex.

3. Decompose Visible M_X Distribution (ZEUS).

Exponential suppression in M_X distribution for "standard" DIS.

Diffractive contribution identified as excess at small M_X above fit to $Ae^{b\ln M}X$


BEAM-LINE INSTRUMENTATION

Measurement of the t Dependence

$$5 < Q^2 < 20 \ {\rm GeV^2} \qquad 0.015 < \beta < 0.5$$

$$x_{\rm I\!P} < 0.03$$

ZEUS 1994

From Direct Proton tagging

Fit to $\frac{\mathrm{d}\sigma}{\mathrm{d}t} \propto e^{bt}$

- $b = 7.2 \pm 1.1(\text{stat.}) \stackrel{+0.7}{_{-0.9}}(\text{syst.}) \text{ GeV}^{-2}$
- \rightarrow Highly peripheral scattering.
- \rightarrow Slope parameter b is consistent with that expected from soft hadron-hadron diffraction.

The "Diffractive" Structure Function $F_2^{D(3)}$

In rapidity gap based analyses, t is not measured.

Semi-inclusive cross section measurements are presented in terms of a 'diffractive' structure function $F_2^{D(3)}(\beta, Q^2, x_{I\!\!P})$, defined as

$$\frac{\mathrm{d}\sigma^{ep\to eXY}}{\mathrm{d}\beta~\mathrm{d}Q^2~\mathrm{d}x_{I\!\!P}} = \frac{4\pi\alpha^2}{\beta Q^4}~(1-y+\frac{y^2}{2})~F_2^{D(3)}(\beta,Q^2,x_{I\!\!P})$$

In the H1 case, $|t| < 1 \text{ GeV}^2$ and $M_Y < 1.6 \text{ GeV}$.

f the nPp vertex factorized (as expected from

If the pIPp vertex factorises (as expected from hadron-hadron physics) then ...

... such that $x_{I\!\!P}$ dependence is universal at all β and Q^2 .

The $x_{\mathbb{P}}$ Dependence of $F_2^{D(3)}$

Regge theory tells us how to parameterise the short distance physics at the photon vertex:

$$\begin{split} f_{\mathbb{P}/\mathbb{P}}(x_{\mathbb{P}}) &= \int_{-1 \, \text{GeV}^2}^{t_{min}(x_{\mathbb{P}})} \left(\frac{1}{x_{\mathbb{P}}}\right)^{2\alpha_{\mathbb{P}}(t)-1} e^{B_{\mathbb{P}}t} \, \, \mathrm{d}t \\ \text{with } \alpha_{\mathbb{P}}(t) &= \alpha_{\mathbb{P}}(0) + \alpha_{\mathbb{P}}'t. \end{split}$$

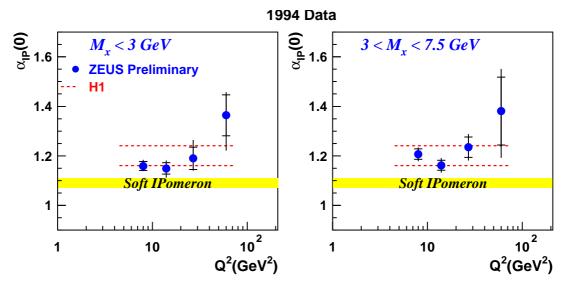
 $x_{\mathbb{P}}$ dependence is found to vary with β ...

...in a Regge model, the measured data require a minimum of two exchanges:

Good fits obtained throughout kinematic range using:

$$F_2^{D(3)} = f_{\mathbb{P}/P}(x_{\mathbb{P}}) F_2^{\mathbb{P}}(\beta, Q^2) + f_{\mathbb{R}/P}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(\beta, Q^2)$$

 $\alpha_{\mathbb{P}}(0), \ \alpha_{\mathbb{R}}(0), \ F_2^{\mathbb{P}}(\beta, Q^2), \ F_2^{\mathbb{R}}(\beta, Q^2)$ free fit parameters.


The pomeron intercept and Q^2

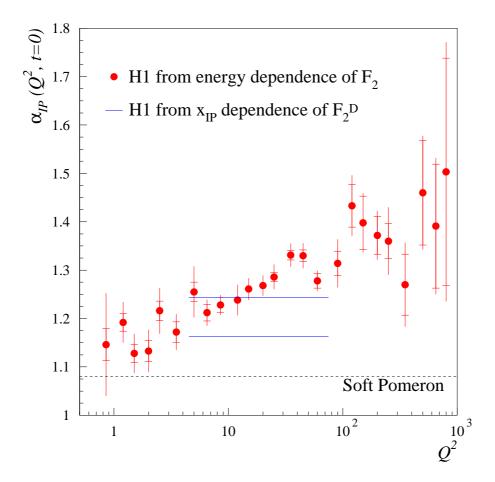
From H1 Phenomenological fits:

$$\alpha_{\mathbb{P}}(0) = 1.203 \pm 0.020 \text{ (stat.)} \pm 0.013 \text{ (syst.)} ^{+0.030}_{-0.035} \text{(model)}$$

Larger than in soft hadron-hadron physics $(\alpha_{\mathbb{P}}(0) \sim 1.1)$.

Comparison of H1 and ZEUS results:

... No significant variation with Q^2 to present precision within measured kinematic range.


Intercept of the sub-leading exchange in the H1 fits:

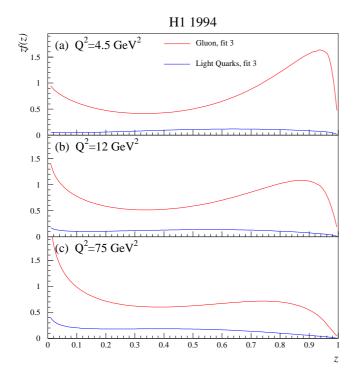
$$\alpha_{\rm I\!R}(0) = 0.50 \pm 0.11 \text{ (stat.)} \pm 0.11 \text{ (syst.)} ^{+0.09}_{-0.10} \text{(model)}$$

Consistent with f, ω , ρ or a exchange.

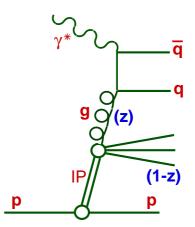
Comparison of $\alpha_{\mathbb{P}}(0)$ from F_2 and $F_2^{D(3)}$

 $F_2(x,Q^2)$ represents the total $\gamma^* p$ Cross Section Regge phenomenology $\to F_2(x,Q^2) \sim x^{1-\alpha} \mathbb{P}^{(Q^2,t=0)}$

Is a similar behaviour of the effective pomeron intercept observed in total and dissociation cross sections emerging? Universal dependence of $\alpha_{\rm I\!P} \left(0 \right)$ on scale?

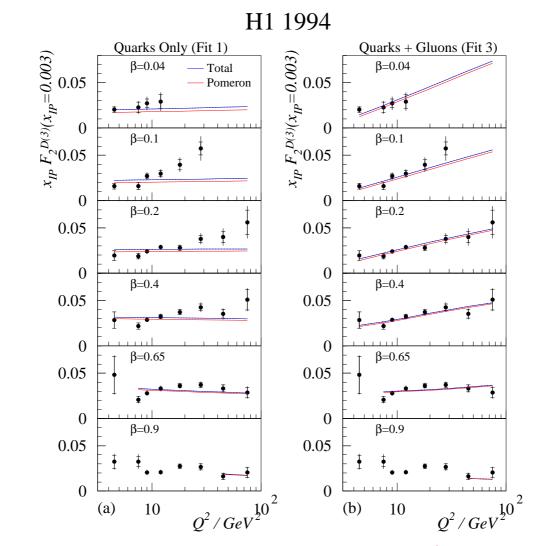

Driven by p-gluon distribution? / Screening? / Hard IP?

$\underline{\mathrm{DGLAP}}$ Fits to $F_2^{D(3)}$


The β and Q^2 dependence of $F_2^{D(3)}$ can be considered in terms of the QCD evolution of structure functions for the pomeron and sub-leading exchange.

Extend the Regge fits to $x_{\mathbb{P}}$ dependence with a QCD motivated model of the β/Q^2 dependence.

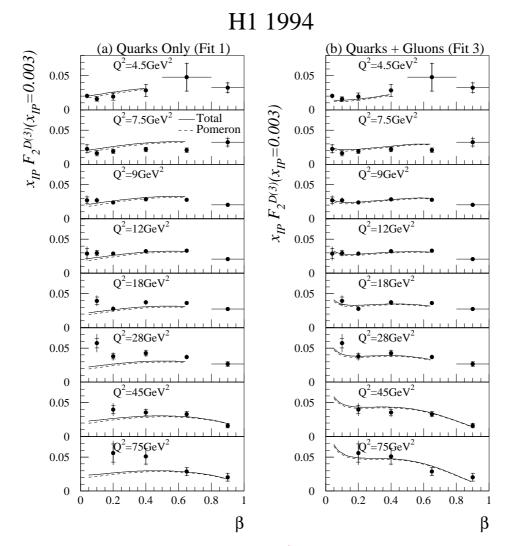
- Paramterise \mathbb{P} q_s and g distributions with Chebychev polynomials at starting scale $Q_0^2 = 3 \text{ GeV}^2$.
- Assume a π structure function for IR.
- Evolve to $Q^2 > Q_0^2$ using NLO DGLAP equations.


Acceptable fits only when IP is dominated by "hard" gluons.

 $\sim 90\%$ gluon at $Q^2 = 4.5 \text{ GeV}^2$, $\sim 80\%$ at $Q^2 = 75 \text{ GeV}^2$.

$\underline{Q^2 \; ext{dependence}} \; ext{of} \; F_2^{D(3)}$

Best fits with (a) Quarks only and (b) Quarks and Gluons at the starting scale.


Rising scaling violations persist to $\beta > 0.4$ (contrasts with hadron structure functions).

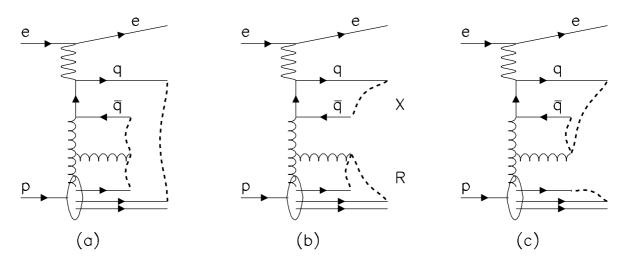
Quarks only at the starting scale cannot describe the data.

A large gluon density is required.

$\underline{eta} \ \mathrm{dependence} \ \mathrm{of} \ F_2^{D(3)}$

Best fits with (a) Quarks only and (b) Quarks and Gluons at the starting scale.

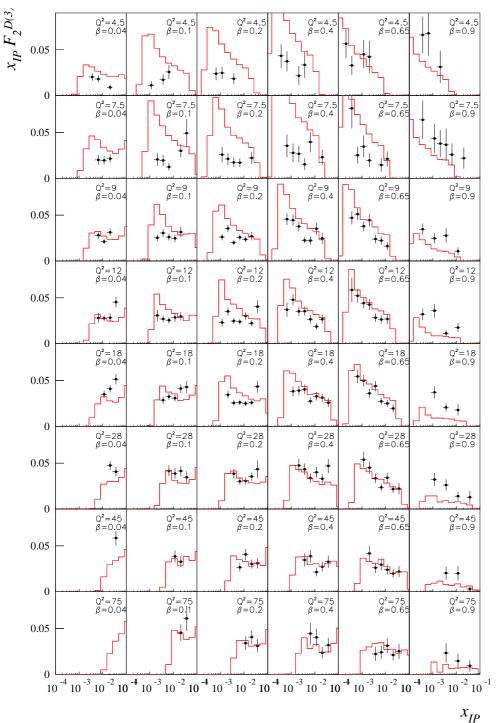
Large contributions at high β (contrasts with hadron structure functions).


The gluon distribution must have large contributions at high fractional momenta.

Alternative Models of Diffractive DIS

Soft Colour Rearrangement (IP-free!)

Start from proton parton distributions with standard matrix elements / parton showers (dominantly BGF at low x).


Additional non-perturbative interactions affect final state colour connections but not parton momenta.

Implemented in the Monte Carlo model LEPTO 6.5

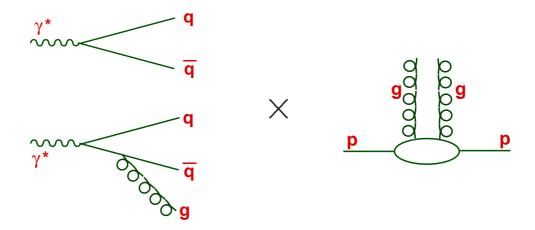
Free parameter: Probability of Soft Colour Interactions ... to be fixed by data.

Comparison of $F_2^{D(3)}(\beta, Q^2, x_{I\!\!P})$ and LEPTO 6.5

H1 1994 DataLEPTO[Pr(SCI) = 0.5]

 \sim reasonable shape in $x_{\mathbb{P}}$.

Does not describe Q^2 dependence.

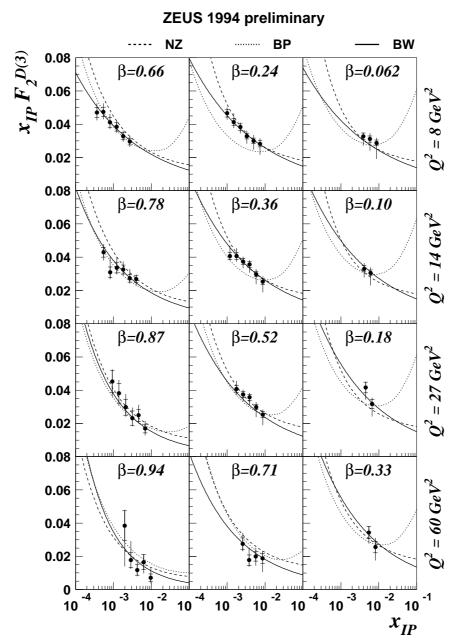

Fails at high β (= low M_X non-perturbative region).

Alternative Models of Diffractive DIS

~ Two-gluon Exchange models

Many years of development / many variations ...

(Low, Nussinov, Mueller, Donnachie, Landshoff, Nikolaev, Zakharov, Diehl, Bartels, Wüsthoff, Bialas, Peschanski . . .) $q\bar{q} \ / \ q\bar{q}g \ \text{production via the exchange of 2 gluons / BFKL ladder from the proton.}$



e.g. Recent model (Bartels, Wüsthoff) with 3 significant contributions in convenient form to fit to F_2^D data.

$$\begin{split} F_{q\bar{q}}^{\mathrm{T}} &\propto \left(\frac{x_0}{x_{I\!\!P}}\right)^{n2(Q^2)} \beta (1-\beta) \\ F_{q\bar{q}g}^{\mathrm{T}} &\propto \left(\frac{x_0}{x_{I\!\!P}}\right)^{n2(Q^2)} \alpha_{\mathrm{s}} \ln \left(\frac{Q^2}{Q_0^2} + 1\right) (1-\beta)^{\gamma} \\ \Delta F_{q\bar{q}}^{\mathrm{L}} &\propto \left(\frac{x_0}{x_{I\!\!P}}\right)^{n4(Q^2)} \frac{Q_0^2}{Q^2} \left[\ln \left(\frac{Q^2}{4Q_0^2\beta} + \frac{7}{4}\right)\right]^2 \beta^3 (1-2\beta)^2 \end{split}$$

2-gluon / BFKL Exchange Models

Nikolaev & Zakharov, Bialas & Peschanski and Bartels & Wüsthoff models:

Phton fluctuation / 2-gluon exchange models can be made to describe $F_2^{D(3)}$, even at large β .

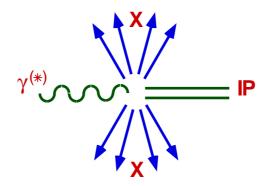
eta dependence in the Bartels - Wüsthoff model.

Typical decomposition of the data in β and Q^2 in a two-gluon exchange model.

Mixture of $q\bar{q}$ and $q\bar{q}g$ final states.

Higher twist contribution important at large β .

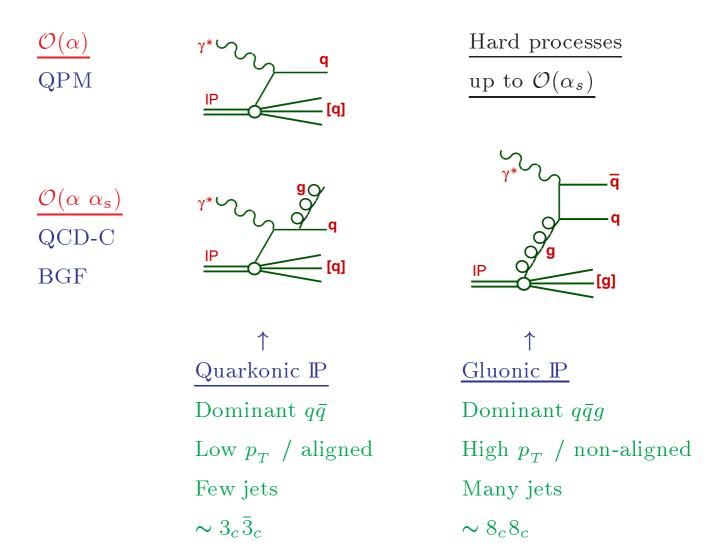
These models make clear predictions for the partonic composition $(q\bar{q}, q\bar{q}g)$ of the final state X


The final state X at low $x_{\mathbb{P}}$

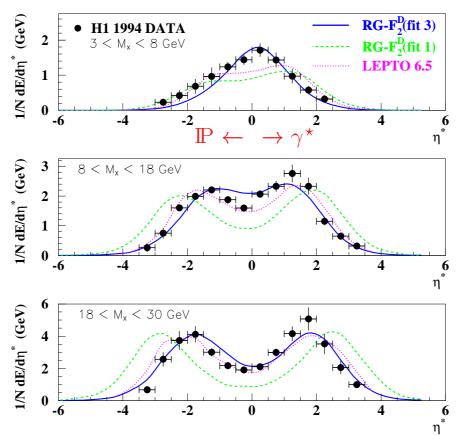
Many hadronic final state observables are sensitive to the QCD Structure of Diffraction

- Thrust (H1, ZEUS), Sphericity (ZEUS)
- Energy flow (H1)
- Particle spectra (H1, ZEUS)
- Paricle multiplicities, correlations (H1)
- Jet rates (ZEUS, H1)
- Charm production rates (ZEUS, H1)

Studies are made in the rest frame of X ($\equiv \gamma^* \mathbb{P}$ centre of mass).

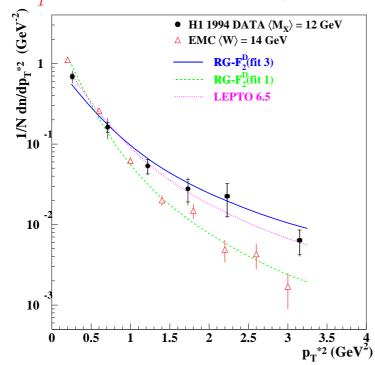

 p_T etc. measured relative to the photon (collision) axis in this frame.

Predictions for the final state X

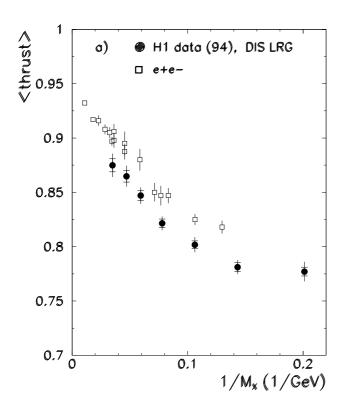

Evolving parton distributions for the pomeron are implemented in the RAPGAP Monte Carlo model.

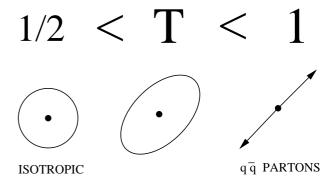
- RG F_2^D (fit 3): Best QCD fit to F_2^D with a 'hard gluon' dominated structure.
- RG F_2^D (fit 1): Poor QCD fit to F_2^D with quarks only at the starting scale for DGLAP evolution.

Energy Flow in the Rest frame of X


Pseudorapidity η^* relative to γ^* direction in X rest frame.

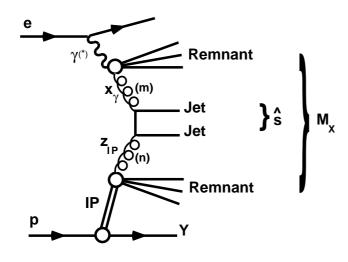
- Approximately symmetric forward / backward hemispheres.
- 2-jet structure with sizeable central rapidity plateau emerges with increasing ${\cal M}_X$.
- Models in which BGF is the dominant process (RAPGAP-g and LEPTO) describe data.
- RAPGAP-q does not describe the data.
- ... Gluons are needed to model diffractive final states.


Charged Particle $p_{\scriptscriptstyle T}^{\star}$ Distribution

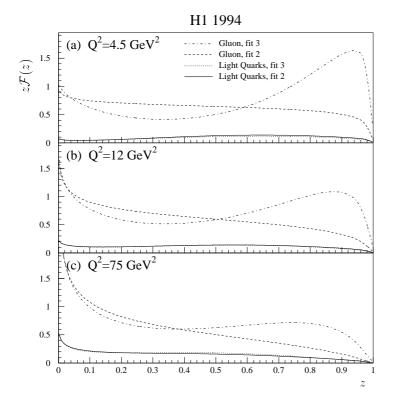

 $p_{\scriptscriptstyle T}^{\star}$ measured relative to γ^{\star} axis in rest frame of X

Gluons required to generate hard p_T^{\star} distribution.

Thrust - measure of '2-jettiness'



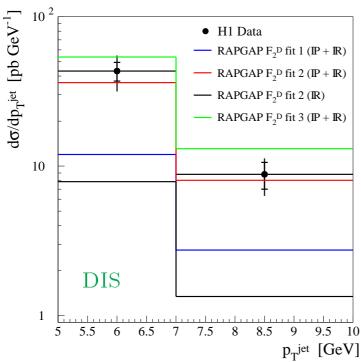
Gluons required to generate lower thrust than $q\bar{q}$. Hadronisation effects decrease thrust at low M_X .


Dijet Production Rates

Search for dijet structures as components of the system X Cone algorithm requiring $p_T^{\rm jet} > 5$ GeV relative to $\gamma^{(\star)}$ axis in rest frame of X.

Can measure fractions of $\gamma^{(\star)}$ and IP momentum transferred to the dijet system.

$$\begin{aligned} x_{\gamma}^{\mathrm{jets}} &= \left(P.m\right)/\left(P.q\right) \\ z_{\mathrm{I\!P}}^{\mathrm{jets}} &= \left(q.n\right)/\left(q.[P-Y]\right) \end{aligned}$$


The results are compared with 3 sets of \mathbb{P} and \mathbb{R} parton distributions, evolving with $\hat{p_T}$ as a scale.

Dijet $p_{\scriptscriptstyle T}^{ m jet}$ Distributions

 p_T^{jet} relative to γ^{\star} axis in rest frame of X

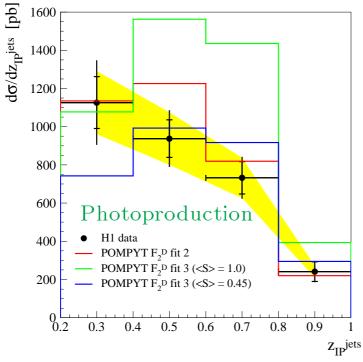
Sub-leading exchange contribution $\sim 15\%$

Data described by gluon dominated IP

Quark dominated IP low by a factor ~ 5

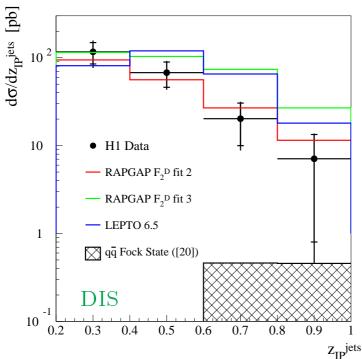
Photoproduction $x_{\gamma}^{\rm jets}$ Distributions

Fraction of photon momentum entering the hard scattering.


Photoproduction

Both direct $x_{\gamma} = 1$ and resolved $x_{\gamma} < 1$ contributions observed.

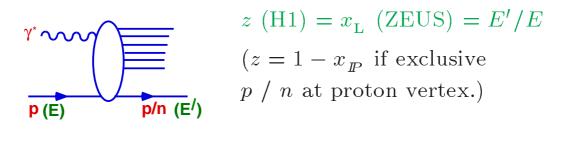
Possible presence of rapidity gap destruction effects in resolved photoproduction due to spectator interactions: peaked gluon model can describe data with a weight $\langle S \rangle \sim 0.5$ applied to resolved photon events.


$z_{\scriptscriptstyle{ m I\!P}}^{ m jets}$ Distributions

Fraction of pomeron momentum entering the hard scattering.

Contributions throughout the $z_{\rm I\!P}^{\rm jets}$ range in both photoproduction and DIS

Can be described by the models with a gluon dominated IP


LEPTO - Pr(SCI) = 0.5 is close to DIS data.

 $q\bar{q}$ final state alone cannot describe data.

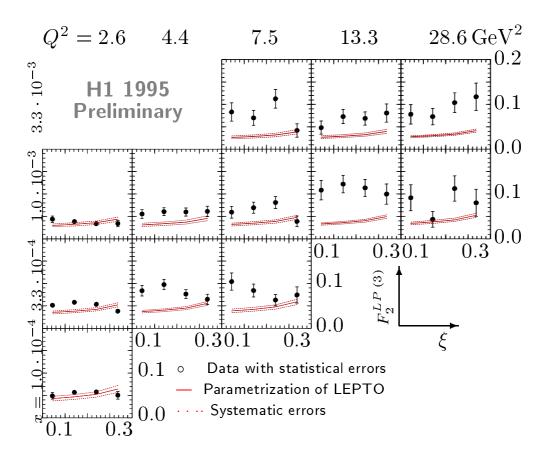
 $q\bar{q}g$ states also required.

Leading (and not so leading) Baryons

ZEUS and H1 can detect and measure forward protons and neutrons with a wide range of energies.

Several interesting issues in the large $x_{\mathbb{P}}$ region:

- In Regge language, probe the sub-leading exchanges, especially I=1 π -exchange.
- As $x_{\mathbb{P}}$ increases, Regge theory must break down somewhere!
- General questions of understanding baryon fragmentation.

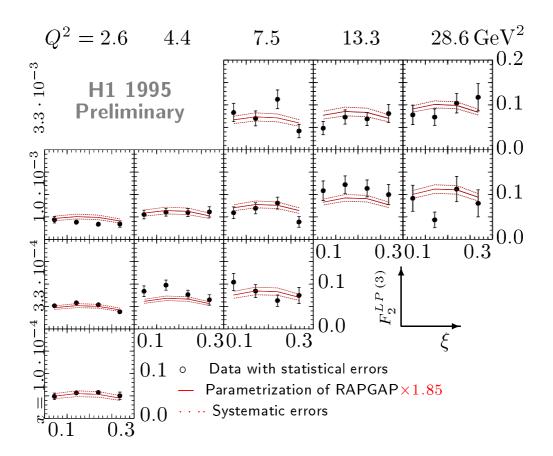


Comparisons are made with ...

- Factorisable Regge models based on π exchange (RAPGAP, POMPYT)
- Soft Colour Interactions (LEPTO)

Leading Proton Structure Function

Defined in the same way as $F_2^{D(3)}$, but for $p_T^p < 200 \text{ MeV}$ Measured for 0.7 < z < 0.9 (little IP exchange).

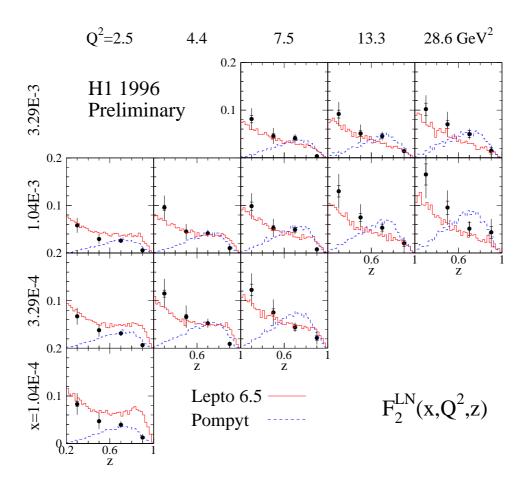


- z dependence \sim flat.
- x and Q^2 dependence similar to inclusive structure function.

LEPTO reproduces leading proton z shape reasonably well. Q^2 scaling violations are not described.

Leading Proton Structure Function

... compared to RAPGAP implementation of Reggeised π^0 exchange with $e\pi$ DIS.


RAPGAP- π describes the shape in all variables reasonably well.

Normalisation in principle well constrained by the model, but measured cross section is larger by a factor ~ 1.85. ...in a Regge model, more combicated mixture of exchanges in this region?

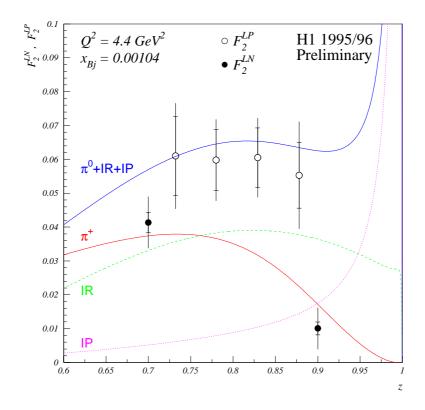
Leading Neutron Structure Function

 $F_2^{\mathrm{LN}(3)}$ defined for $p_T^n < 200~\mathrm{MeV}$ Measured for 0.2 < z < 1

Compared with POMPYT implementation of π^+ exchange and with LEPTO.

POMPYT- π gives good description for $z \gtrsim 0.7$ with no need for any scaling factors (Isospin-1 exchange only for neutrons).

For $z \lesssim 0.7$, Regge model inappropriate - not exclusive n production.


LEPTO gives a reasonable description at all z.

A combined Regge model of $F_2^{LP(3)}$ and $F_2^{LN(3)}$

Assume: IP
$$\alpha(0) \sim 1.2, I = 0 - p$$

IR $(f, \omega) \alpha(0) \sim 0.5, I = 0 - p$
 $\pi \qquad \alpha(0) \sim 0.0, I = 1 - p, n$

Assume: Low-x Structure function universality (GRV- π for all contributions.

Flux normalisations fixed by hadron-hadron data.

...it is possible to build a Regge based model to describe medium - large z proton and neutron production.

Possibilities of extracting π structure function at low x using leading neutrons . . .

Summary

- Colour-singlet exchange processes constitute a significant fraction of the DIS cross section.
- Diffractive (IP exchange) interactions are dominant at low $x_{I\!\!P}$.
- $\alpha_{\mathbb{P}}(0)$ larger than in soft hadronic interactions.
- QCD analysis of $F_2^{D(3)}$ indicates that the IP is dominated by 'hard' gluons ($\sim 80 90\%$ for $4.5 < Q^2 < 75 \text{ GeV}^2$).
- All hadronic final state measurements are consistent with this picture.
- A complicated mixture of meson exchanges is present at larger $x_{I\!\!P}$, with the π dominant in the neutron channel.