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Strong Interactions in the Standard Model

Modern Picture of Hadrons

and Their Interactions:

� Parton Model (e.g. proton = uud)

� SU(3) Gauge Theory, QCD
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1) \Hard" Interactions (< 1% of hadronic cross sections)

� �

s

small: \Asymptotic Freedom".

� Well understood within perturbative QCD.

2) \Soft" Interactions (> 99% of hadronic cross sections)

� �

s

large: \Infrared Slavery".

� Poorly understood within QCD.

� Many years of \Regge" Phenomenology.

Understanding Soft Hadronic Interactions in terms of

QCD is a major challenge to the Standard Model.

In `di�ractive' Deep-Inelastic Scattering, the interface

between `soft' and `hard' strong interactions is studied.



Di�ractive Processes and the Pomeron

Soft di�raction: elastic, total and dissociation cross

sections.
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(via the optical theorem)

It is useful to think in terms of the exchange of an object

with net vacuum quantum numbers - the \pomeron" (IP).

� �

IP

(t) ' 1:081 + 0:26t

� `FACTORISES!' Describes the energy dependence of

all such hadron-hadron cross sections where s� t.

� BUT The partonic structure of the interaction

remains an enigma!



The Advantages of HERA for Di�raction

At the HERA ep collider, di�ractive 


(?)

p interactions can

be studied.
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All �ve kinematic variables can be measured:

� Q

2

� 0, jtj � 0. ! soft physics, soft pomeron.

� Large Q

2

. ! 


?

probes IP structure. ? ? ?

� Large jtj. ! search for perturbative (BFKL?) IP.

. . . the non-perturbative$ perturbative transition.
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Kinematics of the Process 


?

p! Xp
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p (or low mass
p-excitation)

(small)

� Q
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2

(Photon virtuality)
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p centre of mass energy)
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(Invariant mass of X)
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Long distance physics at p - vertex:
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! Fraction of p momentum transferred to IP.
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Experimental Techniques

1. Rapidity Gap Selections (H1, ZEUS).

γ( )

{ (MX)X

p

W

p

Largest rapidity

! gap among

�nal state hadrons.

�� large when

M

X

� W

2. Direct Tagging of Leading Baryons (H1, ZEUS).

γ*

p p/n(E) (E )

May or may not

 be a large

rapidity gap.

x

IP

= E

0

=E

if exclusive p / n

at proton vertex.

3. Decompose Visible M

X

Distribution (ZEUS).

Exponential suppression in M

X

distribution for \standard" DIS.

Di�ractive contribution identi�ed

as excess at small M

X

above

�t to Ae

b lnM

X
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Measurement of the t Dependence

5 < Q

2

< 20 GeV

2

0:015 < � < 0:5

x

IP

< 0:03

ZEUS 1994
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! Highly peripheral scattering.

! Slope parameter b is consistent with that

expected from soft hadron-hadron di�raction.



The \Di�ractive" Structure Function F

D(3)

2

In rapidity gap based analyses, t is not measured.

Semi-inclusive cross section measurements are presented in

terms of a `di�ractive' structure function

F
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In the H1 case, jtj < 1 GeV

2

and M

Y

< 1:6 GeV.
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If the pIPp vertex factorises (as expected from

hadron-hadron physics) then . . .
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The x

IP

Dependence of F

D(3)

2

Regge theory tells us how to parameterise the short

distance physics at the photon vertex:
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x

IP

dependence is found to vary with � . . .

. . . in a Regge model, the measured data require a

minimum of two exchanges:

Good �ts obtained throughout kinematic range using:
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The pomeron intercept and Q

2

From H1 Phenomenological �ts:

�

IP

(0) = 1:203� 0:020 (stat:) � 0:013 (syst:)

+0:030

�0:035

(model)

Larger than in soft hadron-hadron physics (�

IP

(0) � 1:1).

|||||||||||||||{

Comparison of H1 and ZEUS results:
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. . . No signi�cant variation with Q

2

to present precision

within measured kinematic range.
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Intercept of the sub-leading exchange in the H1 �ts:

�

IR

(0) = 0:50� 0:11 (stat:) � 0:11 (syst:)

+0:09

�0:10

(model)

Consistent with f , !, � or a exchange.



Comparison of �

IP

(0) from F

2

and F

D(3)

2

F

2
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2

) represents the total 
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p Cross Section

Regge phenomenology! F
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Is a similar behaviour of the e�ective pomeron intercept

observed in total and dissociation cross sections emerging?

Universal dependence of �

IP

(0) on scale?

Driven by p-gluon distribution? / Screening? / Hard IP ?



DGLAP Fits to F

D(3)

2

The � and Q

2

dependence of F

D(3)

2

can be considered in

terms of the QCD evolution of structure functions for the

pomeron and sub-leading exchange.

Extend the Regge �ts to x

IP

dependence with a QCD

motivated model of the �=Q

2

dependence.

� Paramterise IP q

s

and g distributions with Chebychev

polynomials at starting scale Q

2

0

= 3 GeV

2

.

� Assume a � structure function for IR.

� Evolve to Q

2

> Q

2

0

using NLO DGLAP equations.

H1 1994

(a)  Q2=4.5 GeV2 Gluon, fit 3

Light Quarks, fit 3
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)

(b)  Q2=12 GeV2

(c)  Q2=75 GeV2
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� 90% gluon at Q
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2
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Q

2

dependence of F

D(3)

2

Best �ts with (a) Quarks only and (b) Quarks and Gluons

at the starting scale.
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Rising scaling violations persist to � > 0:4 (contrasts with

hadron structure functions).

Quarks only at the starting scale cannot describe the data.

A large gluon density is required.



� dependence of F

D(3)

2

Best �ts with (a) Quarks only and (b) Quarks and Gluons

at the starting scale.

H1 1994
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Large contributions at high � (contrasts with hadron

structure functions).

The gluon distribution must have large contributions at

high fractional momenta.



Alternative Models of Di�ractive DIS

Soft Colour Rearrangement (IP-free!)

Start from proton parton distributions with standard

matrix elements / parton showers (dominantly BGF at low

x).

Additional non-perturbative interactions a�ect �nal state

colour connections but not parton momenta.

Implemented in the Monte Carlo model LEPTO 6.5

Free parameter: Probability of Soft Colour Interactions

. . . to be �xed by data.
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dependence.

Fails at high �

(= low M

X

non-perturbative

region).



Alternative Models of Di�ractive DIS

� Two-gluon Exchange models

Many years of development / many variations . . .

(Low, Nussinov, Mueller, Donnachie, Landsho�, Nikolaev,

Zakharov, Diehl, Bartels, W�ustho�, Bialas, Peschanski . . . )

q�q / q�qg production via the exchange of 2 gluons / BFKL

ladder from the proton.

γ* q
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q

q
γ*

g

p p

gg
�

e.g. Recent model (Bartels, W�ustho�) with 3 signi�cant

contributions in convenient form to �t to F

D

2

data.
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2-gluon / BFKL Exchange Models

Nikolaev & Zakharov, Bialas & Peschanski and Bartels &

W�ustho� models:

x IP
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� dependence in the Bartels - W�ustho� model.

Typical decomposition of the data in � and Q

2

in a

two-gluon exchange model.

Mixture of q�q and q�qg �nal states.

Higher twist contribution important at large �.

These models make clear predictions for the partonic

composition (q�q, q�qg) of the �nal state X



The �nal state X at low x

IP

Many hadronic �nal state observables are sensitive to the

QCD Structure of Di�raction

� Thrust (H1, ZEUS), Sphericity (ZEUS)

� Energy 
ow (H1)

� Particle spectra (H1, ZEUS)

� Paricle multiplicities, correlations (H1)

� Jet rates (ZEUS, H1)

� Charm production rates (ZEUS, H1)

||||||||||||

Studies are made in the rest frame of X (� 


?

IP centre of

mass).

p

T

etc. measured relative to the photon (collision) axis in

this frame.

γ( )

X

X

IP



Predictions for the �nal state X

Evolving parton distributions for the pomeron are

implemented in the RAPGAP Monte Carlo model.

� RG F

D

2

(�t 3): Best QCD �t to F

D

2

with a `hard

gluon' dominated structure.

� RG F

D

2

(�t 1): Poor QCD �t to F

D

2

with quarks only

at the starting scale for DGLAP evolution.

||||||||||||
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Quarkonic IP Gluonic IP

Dominant q�q Dominant q�qg

Low p

T

/ aligned High p

T

/ non-aligned

Few jets Many jets
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�
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c

� 8

c

8

c

Hard processes

up to O(�

s

)



Energy Flow in the Rest frame of X

Pseudorapidity �

?

relative to 


?

direction in X rest frame.

    η*   
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/N
 d

E
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?

IP 

� Approximately symmetric forward / backward

hemispheres.

� 2-jet structure with sizeable central rapidity plateau

emerges with increasing M

X

.

� Models in which BGF is the dominant process

(RAPGAP-g and LEPTO) describe data.

� RAPGAP-q does not describe the data.

� . . . Gluons are needed to model di�ractive �nal states.



Charged Particle p

?

T

Distribution

p

?

T

measured relative to 


?

axis in rest frame of X

 pT
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Gluons required to

generate hard

p

?

T

distribution.

Thrust - measure of `2-jettiness'

q q  PARTONS
_

1/2

ISOTROPIC

T << 1

Gluons required to generate

lower thrust than q�q.

Hadronisation e�ects decrease

thrust at low M

X

.



Dijet Production Rates

Search for dijet structures as components of the system X

Cone algorithm requiring p

jet

T

> 5 GeV relative to 


(?)

axis in rest frame of X.

γ(*)

e

Remnant

p
IP

Remnant

Y

Jet

Jet } ŝ } M
X

xγ

z
IP

(n)

(m)

Can measure fractions of 


(?)

and IP momentum transferred

to the dijet system.

x

jets




= (P:m) = (P:q)

z

jets

IP

= (q:n) = (q:[P � Y ])

||||||||||||

H1 1994

(a)  Q2=4.5 GeV2 Gluon, fit 3
Gluon, fit 2
Light Quarks, fit 3
Light Quarks, fit 2

(b)  Q2=12 GeV2

(c)  Q2=75 GeV2
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as a scale.



Dijet p

jet

T

Distributions

p

jet

T

relative to 


?

axis in rest frame of X
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low by a factor � 5



Photoproduction x

jets




Distributions

Fraction of photon momentum entering the hard

scattering.
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Photoproduction

Both direct x




= 1

and resolved x




< 1

contributions observed.

Possible presence of rapidity gap destruction e�ects in

resolved photoproduction due to spectator interactions:

peaked gluon model can describe data with a weight

hSi � 0:5 applied to resolved photon events.



z

jets

IP

Distributions

Fraction of pomeron momentum entering the hard

scattering.
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DIS

LEPTO - Pr(SCI) = 0:5

is close to DIS data.

q�q �nal state alone

cannot describe data.

q�qg states also required.



Leading (and not so leading) Baryons

ZEUS and H1 can detect and measure forward protons

and neutrons with a wide range of energies.

γ*

p p/n(E) (E )

z (H1) = x

L

(ZEUS) = E

0

=E

(z = 1� x

IP

if exclusive

p / n at proton vertex.)

|||||||||||||{

Several interesting issues in the large x

IP

region:

� In Regge language, probe the sub-leading exchanges,

especially I = 1 �-exchange.

� As x

IP

increases, Regge theory must break down

somewhere!

� General questions of understanding baryon

fragmentation.

|||||||||||||{

Comparisons are made with . . .

� Factorisable Regge models based on � exchange

(RAPGAP, POMPYT)

� Soft Colour Interactions (LEPTO)



Leading Proton Structure Function

De�ned in the same way as F

D(3)

2

, but for p

p

T

< 200 MeV

Measured for 0:7 < z < 0:9 (little IP exchange).

H1 1995

Preliminary
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� z dependence � 
at.

� x and Q

2

depencence similar to inclusive structure

function.

LEPTO reproduces leading proton z shape reasonably

well. Q

2

scaling violations are not described.



Leading Proton Structure Function

. . . compared to RAPGAP implementation of Reggeised �

0

exchange with e� DIS.

H1 1995

Preliminary
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RAPGAP-� describes the shape in all variables reasonably

well.

Normalisation in principle well constrained by the model,

but measured cross section is larger by a factor � 1.85.

. . . in a Regge model, more comlicated mixture of

exchanges in this region?



Leading Neutron Structure Function

F

LN(3)

2

de�ned for p

n

T

< 200 MeV

Measured for 0:2 < z < 1

Compared with POMPYT implementation of �

+

exchange

and with LEPTO.
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POMPYT-� gives good description for z

>

�

0:7 with no

need for any scaling factors (Isospin-1 exchange only for

neutrons).

For z

<

�

0:7, Regge model inappropriate - not exclusive n

production.

LEPTO gives a reasonable description at all z.



A combined Regge model of F

LP (3)

2

and F

LN(3)

2

Assume: IP �(0) � 1:2, I = 0 - p

IR (f , !) �(0) � 0:5, I = 0 - p

� �(0) � 0:0, I = 1 - p, n

Assume: Low-x Structure function universality (GRV-� for

all contributions.

Flux normalisations �xed by hadron-hadron data.
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. . . it is possible to build a Regge based model to describe

medium - large z proton and neutron production.

Possibilities of extracting � structure function at low x

using leading neutrons . . .



Summary

� Colour-singlet exchange processes constitute a

signi�cant fraction of the DIS cross section.

� Di�ractive (IP exchange) interactions are dominant at

low x

IP

.

� �

IP

(0) larger than in soft hadronic interactions.

� QCD analysis of F

D(3)

2

indicates that the IP is

dominated by `hard' gluons (� 80� 90% for

4:5 < Q

2

< 75 GeV

2

).

� All hadronic �nal state measurements are consistent

with this picture.

� A complicated mixture of meson exchanges is present

at larger x

IP

, with the � dominant in the neutron

channel.


