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SM Higgs boson decays
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Higgs boson is rather short-lived, decaying through different channels!
Following the results from the LEP experiments, TeVatron had to focus in the region with my>114GeV
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Higgs Boson production at the TeVatron
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For mu<135 GeV the decay H—bb dominates, while myp>135GeV the
decay H—-WW dominates. The former can only be used in the associated
production, while the HH-WW-—lvlv can be used also inclusively
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The TeVatron ppbar collider

1985 first proton-antiproton collisions
1988-89 first physics run, CDF
1992-96 Run 1: 120 pb', 1.8TeV, CDF and D@
1996-2001 Major detector upgrades

2001-11 Run 2: 10 b1, 1.96 TeV
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The CDF detector
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The DO detector
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Run | Higgs Results

CDF PRELIMINARY RunI

Table 1: Table summarising the results for the SM Higgs searches showing for each channel the corresponding
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b-tags | ment | (pb~!) 90 110 130 background | events o~ e . 1 Wi |
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Run II: Integrated Luminosity
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01103 01/04 01005 _ 01/06  01/07 01/08 01109 0110 01411

12000 _______________________ E— ________________ ______________  — — E— B 7

10000 S a— — — — T S— E— o .
3000:_ ....................... ................... ................ .............. L ]
5000__ ________________________ ________________ _______________________ o — _________________________

4000 - Delivered

. Ac:qmred | | |
20000 — ..o S — oy

lMI!'II:IIl!IIIIE'III!I|IIEII||E|||||
1%00 2000 3000 4000 5000 6000 7000 8000 9000

store number

Run Il Integrated Luminosity 19 April 2002 -30 September 2011
120 [T T T T 11 [ ] /,
11.0 ==Delivered 1.9 ,
100 —Recorded e /,
9.0 /
8.0 /}
TeVatron delivered ~12fb-' to each experiment &z ra dl
. 2 /
~10fb™" recorded per experiment ge yZ
E 5.0 "4
34-.(] /
3.0 >/
/)
2.0 ot
- ‘p'/
1.0
" o ., O 1;,"%3:‘"%3."’*&%;’*’%:**91,,;’9& aqiio,_%% Ot gy g, O o Yo Py Ty Y B o e O on, oy D Ao Ay

K. Nikolopoulos Higgs Boson Physics Jan, 2014 gﬁ{%ﬁ%ﬁm 8



TeVatron Higgs Sensitivity Study: Initial Projection

combined CDF /DO thresholds
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FIGURE 103. The integrated luminosity required per experiment, to either exclude a SM Higgs boson at 95% CL or
discover it at the 30 or 5o level, as a function of the Higgs mass. These results are based on the combined statistical
power of both experiments. The curves shown are obtained by combining the ¢vbb, vUbb and £ ¢~ bb channels using
the neural network selection in the low-mass Higgs region (90 GeV < mug,, < 130 GeV), and the 0¥t 5 and (0 v
channels in the high-mass Higgs region (130 GeV < mag,, < 200 GeV). The lower edge of the bands is the calculated
threshold; the bands extend upward from these nominal thresholds by 30% as an indication of the uncertainties in
b-tagging efficiency, background rate, mass resolution, and other effects.

Given the above discussion, the basic conclusions arrived at below are not unreasonably aggressive. Break-
throughs in technique are always possible, and have indeed been the norm in the past. For example both the
Higgs search in LEP1 and the top quark search in Run 1 at the Tevatron exceeded the expectations of studies
prior to machine turn-on. The studies presented here should be taken as cautiously optimistic: Using full
mass spectrum fits, applying neural network techniques, improving the trigger efficiencies, adding other search
mode, and improving the mass resolution and tagging efficiency beyond that projected here may all serve to
dramatically improve the discovery potential for the Higgs at the Tevatron.
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TeVatron Higgs Sensitivity Study: Update

FERMILAB-PUB-03/320-E
October 17, 2003

Results of the Tevatron Higgs Sensitivity Study

CDF and DO Collaborations
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Figure 24: Integrated luminosities per experiment corresponding to the median expectations
for 95% confidence level exclusion, 3o evidence and 5o discovery for mgy = 110—130 GeV /2.
The narrow curves are the updated analysis from this study (2003) and the thicker curves
are the results from the previous SHWG Study (1999).

9 Conclusions and Summary

The results of this study show a reduction in the amount of integrated luminosity required
to search for the Higgs boson at the Tevatron collider relative to the previous SUSY-Higgs
Working Group study. The following improvements were verified with detailed analyses:

e The efficiencies of triggers, lepton identification, as well as other selection criteria,
are based on Runll data. The b-tagging efficiencies, one of the most crucial perfor-

mance parameters in the search for the Higgs boson, are based on GEANT simulations
of the RunIIA and RunIIB detectors and projected luminosities and have been tied
to RunITA data.

e The study of the dijet mass resolution in the ¢bb analysis indicates that a mass
resolution of 10% may be experimentally achievable.

e The accuracy of the QCD background estimate in the vobb analysis was substantially
improved by applying the event selection to the Run II data and using Monte Carlo
generators to estimate the b-quark content.

e An advanced neural network analysis reduces dramatically the amount of ¢ background
while keeping a large fraction of the signal.

e The use of the shapes of the signal and background distributions gives an enhancement
in the search sensitivity of approximately 20% in equivalent integrated luminosity.

The WH and ZH search modes were combined to estimate the full sensitivity of a D@ and
CDF data analysis with 1-10 fb~! in the mass range 110-130 GeV/c?. These results are
summarized in Figure 24 and Table 21. A critical feature of these predictions is the abil-
ity to control systematic errors, especially on the dijet mass shape, for the signal and the
backgrounds. Methods for controlling one of the primary classes of systematic uncertainty,
namely, background rate uncertainties, are discussed. It is anticipated that further evaluation
of the available data samples will give accurate estimates of several important background
rates and detector efficiencies. In summary, the improvements in the Higgs search sensitivi-
ties come from a better use of signal information and more optimized methods of analysis.
Further developments of this type are foreseen in a full complement of analyses from the two
experiments.
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TeVatron 2006: First Combined Limits

 Mid-2005: first fb1
o« 2006: first CDF+DO limits:
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TeVatron 2009: First exclusions

Winter 2009: First mass range excluded after LEP DO 0.9-4.2fb"
(at 95%CL): 160<m_ <170 GeV CDF 2.0 - 3.6 fb
Tevatron Run Il Preliminary, L=0.9-4.2 fb™
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CDF Overview of Searches

CDF Note 10804
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An Example Analysis: CDF WH(—Ivbb)

- Analyzed the 9.45 fb! of the full dataset recorded by CDF
- Triggers for high energy electrons, muons or large missing transverse energy

- Final State: high energy lepton candidates, large missing transverse energy, and 2 or 3 jets 21 b-tag
Jets Et>20 GeV |n|<2.0

Main improvement comparing to the previous result comes from improved b-jet tagging algorithm.
Previously: combination of three b-jet taggers.

Now: Newly developed multivariate b-jet tagger, the Higgs-Optimized b-ldentification Tagger (HOBIT)
Two HOBIT operational points: We denote them as Tight (T €,=0.72) and Loose (L €,b=0.98) respectively.
5 orthogonal b-tagging categories are defined: TT, TL, LL, T, and L. [TT, and TL only for 3 jet events]

Events classified into dedicated lepton categories: central tight leptons, forward electrons, loose muons and
loose electron-like leptons. Where the lepton-identification/trigger acceptance has been maximized (using
relaxed lepton categories and combinations of triggers)

Offline, central electron or muon candidates are required offline to be isolated and have Er (or pr) > 20 GeV (GeV/c¢).

Since the W-+jets signature presents a large missing transverse energy, we require K > 20 GeV (Fr > 10GeV) for
electrons (muons).

We increase the purity of the sample by applying cuts intended to remove multijet events due to QCD processes
that include fake-lepton signatures. The QCD veto is based on the SVM multivariate technique, which uses different
kinematical input variables [10]. Some of them are related to the W kinematics like the lepton pr, Er, or A¢(lepton, /
Eymcorrected) " Qome are related to the kinematics of the jets in the event like urcorrected and the transverse energy of
the second leading Er jet. A variable denoted as K significance is also used. This variable is defined as the ratio of
Fr to a weighted sum of factors correlated with mismeasurement, such as angles between the 1 and the jets and
the amount of jet energy corrections.

For forward electrons and loose electron-like leptons the cut-based QCD veto used in previous iterations of this analysis
is used [11]. This veto applies a linear cut on the Fp and the azimuthal angle (¢) between the 1 and each of the jets
(B > 45 — (30 - |A¢|) GeV), requires a large transverse mass of the reconstructed W boson candidate( Mz (W) > 20
GeV), and a large Fr significance.
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An Example Analysis: CDF WH(—Ivbb)

The inputs to HOBIT are a combination of general jet properties, and inputs developed for SecVtx, Roma and
BNess taggers. The training was performed using a sample of b-quark jets from Higgs to bb samples with a Higgs
mass of 120 GeV as signal and light jets (udsg) from Alpgen W+jets samples. The light jets background sample
was reweighted to have the same ET spectrum as the b-jets from nggs decays

1
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§ ;]j, Slgnél (test samplé) T élgﬁal (trainmg sbr'n'plle)| = .
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Z 16 —
14 F E - - L o e S S R
12 :_ _: g AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA : \ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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8 =K
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300 -
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0 7767 Data Events

K. Nikolopoulos Higgs Boson Physics Jan, 2014 EH{&?E%‘IEX?Z 15



An Example Analysis: CDF WH(—Ivbb)

Number of Jets 2 jets 3 jets
Tagging categories TT TL T LL L

DiTop d77.49+22.17 D 211.19+19.8 | 544.5+52.06 | 63.04+£6.93 | 327.74%33.71 95.7+61.59 C

STopS 59.1+7.06 66.39+5.85 | 118.38+10.68 | 19.35+2.19 69.4+7.13 19.34F2.33 :

STopT 17.4+2.48 32.45+3.98 | 228.454+25.63 | 12.21+1.32 | 134.83+15.56 | 22.13+3.03 99.87+3.32
WW 1.940.48 15.54+3.13 | 217.47+27.09 | 29.26+4.5 719.24+70.55 1.8+0.35 8.04+1.43
WZ 21.86+2.63 25.97+2.28 63.3+6.23 11.8+1 115.13+10.59 4.19+0.51 6+0.57
77 2.6+0.3 2.73+0.24 7.87+0.77 1.08+0.09 11.98+1.08 0.96+0.11 1.22+0.11
Zjets 23.24+2.47 | 184.32+19.71 | 30.93+3.46 | 815.82+85.61 7.03+0.75 15.4+1.62
Whb ﬁm 382.43+155.86 |1372.45+559.67 | 129.59+52.89 | 948. 67:[:387 04 | 107.98+45.01 | 162.42+67.48
Wee , ; 141.43+58.32 | 1379.5+564.72 | 196.66+80.63 12.59+5.31 | 71.59+30.04
WIf 5.17+1.54 73.93+16.53 [1179.09+191.85| 293.49+47.08 3.21+1.1 41.46+10.51
QCD 12.35+7.94 | 101.82+41.71 | 680.92+272.42 | 125.62+50.72 . 5.79+5.17 68.53+28.41
Bkg 617.342172.05 | 1077.125309.74 | 5076.2541730.5 | 913.03£250.76 | 18240, 17:1:38777 680.72-+125.24 | 1008.96+200.09
Obs 556 907 B737 865 18606 643 850

WH115 & 0571008 5 9.98+0.62 (16.29£1.04 )| 2.7£0.27 9.07+0.75 2.24+0.22 2.41+0.14

\/
K. Nikolopoulos Higgs Boson Physics Jan, 2014 BIRMINGHAM

BIRMINGHAM 16



An Example Analysis: CDF WH(—Ivbb)

To take advantage of the kinematic differences between WH and SM background the final discriminant is
constructed by means of Bayesian Neural Network (BNN). One for each b-tagging category (2 jets: Double Tag
Tight, Double Tag Loose, and Single Tag, 3 jets: Double Tag Tight, and Double Tag Loose).

For 3jets the BNN is trained against ttbar, a cut on this variable is applied to subsequently to train an additional
BNN against the W+bb background. The final discriminant separates the events in 2 regions according to the
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An Example Analysis: CDF WH(—Ivbb)
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~75% of the analysis sensitivity comes from these two categories
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An Example Analysis: CDF WH(—Ivbb)
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An Example Analysis: CDF WH(—Ivbb)
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An Example Analysis: CDF WH(—Ivbb)

TABLE V: Systematic uncertainties for the CDF fvbb double tight tag (TT), one tight tag and one loose tag (TL) and double
loose tag (LL) channels. Systematic uncertainties are listed by name; see the original references for a detailed explanation of
their meaning and on how they are derived. Uncertainties are relative, in percent on the event yield. Shape uncertainties are

labeled with an “(S)”.

CDF /vbb double tight tag (TT) channels relative uncertainties (%)

Contribution W+HF Mistags Top Diboson Non-W WH
Luminosity (inel(pp)) 3.8 0 3.8 3.8 0 3.8
Luminosity Monitor 4.4 0 4.4 4.4 0 4.4
Lepton 1D 2.0-4.5 0 2.0-4.5 2.0-4.5 0 2.0-4.5
Jet Energy Scale 4.0-16.6(S) 0.9-3.3(S) 0.9-10.4(S) 4.7-19.7(8) 0 2.3-13.6(S)
Mistag Rate (tight) 0 40 0 0 0 0
Mistag Rate (loose) 0 0 0 0 0 0
B-Tag Efficiency (tight) 0 0 7.8 7.8 0 7.8
B-Tag Efficiency (loose) 0 0 0 0 0 0
tt Cross Section 0 0 10 0 0 0
Diboson Rate 0 0 0 6.0 0 0
Signal Cross Section 0 0 0 0 0 5
HF Fraction in W+jets 30 0 0 0 0 0
ISR+FSR+PDF 0 0 0 0 0 6.4-12.6
Q? 4.0-8.8(S) 0.9-1.8(S) 0 0 0 0
QCD Rate 0 0 0 0 40 0
CDF /vbb one tight and one loose tag (TL) channels relative uncertainties (%)
Contribution W+HF Mistags Top Diboson Non-W WH
Luminosity (inel(pp)) 3.8 0 3.8 3.8 0 3.8
Luminosity Monitor 4.4 0 4.4 4.4 0 4.4
Lepton ID 2.0-4.5 0 2.0-4.5 2.0-4.5 0 2.0-4.5
Jet Energy Scale 3.9-12.4(8) 0.9-3.3(S) 1.4-11.5(S) 5.0-16.0(8) 2.5-16.1(S)
Mistag Rate (tight) 0 19 0 0 0 0
Mistag Rate (loose) 0 10 0 0 0 0
B-Tag Efficiency (tight) 0 0 3.9 3.9 0 3.9
B-Tag Efficiency (loose) 0 0 3.2 3.2 0 3.2
tt Cross Section 0 0 10 0 0 0
Diboson Rate 0 0 0 6.0 0 0
Signal Cross Section 0 0 0 0 0 5
HF Fraction in W+jets 30 0 0 0 0 0
ISR+FSR+PDF 0 0 0 0 0 3.3-10.3
Q? 3.9-7.7(S) 0.9-1.9(S) 0 0 0 0
QCD Rate 0 0 0 0 40 0
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An Example Analysis: CDF WH(—Ivbb)
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VII.

We have presented the results of a search for the standard model Higgs boson decaying to bb, produced in association
with a W boson decaying into a charged lepton and neutrino. We find that for the dataset corresponding to an
integrated luminosity of 9.45 fb™', the data agree with the SM background predictions within the systematic uncer-
tainties. However, a small broad excess for signal-like events is evident in the data (< 2 sigma). We set upper limits
on the Higgs boson production cross section times the bb branching ratio. We find that the observed (expected) upper
limits o(pp — W H) x Br(H — bb) range from 1.38 (1.36) x SM to 21.7 (15.9) x SM for masses ranging from 90
GeV/c? through 150 GeV /c? with 5 GeV /c? mass increments. For 115 GeV/c? the upper limit is 3.13 (1.97).

The increase in sensitivity over the previous 7.5 fb~! analysis [5] is ~32% at 115 GeV/c?, out of which ~11% is due
to the extra integrated luminosity and the rest of the gain is due to improved analysis techniques.
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An Example Analysis: CDF WH(—Ivbb)

APPENDIX A: DIBOSON INTERPRETATION

The production of W Z boson pairs provides an important test of the electroweak sector of the standard model.
In addition, the production rate is significantly higher than that for low-mass Higgs boson so a measurement of this
process using the tools designed for the Higgs boson search could provide a powerful confirmation of the W H — ¢vbb
analysis. In pp collisions at /s = 1.96 TeV, the next-to-leading order (NLO) SM cross section for this process is
oc(WZ)=3.2+0.2 pb [21]. We perform the diboson analysis using exactly the same event selection and tools as are
described above for the WH — fvbb search.

The dijet mass distribution shown in Fig 1 is clearly sensitive to the diboson signal. However, in order to improve
sensitivity and to validate the strategy used for WH — fvbb we train a BNN to identify the W Z signal (see Fig 5).

WH, All leptons, 2 jets, TT+TL CDF Run Il Preliminary ( 9.45fb"1 ) WH, All leptons, 2 jets, TT+TL CDF Run Il Preliminary ( 9.45ﬂ)'1)
%]
£ -+ CDF Data = -+ CDF Data
S 20
4 : [DJaco 9 [Jaco
V] [[]DiTop 3 []DiTop
k) I [CsTops o [C]sTops
o 100 [ STopT o [J)STopT
0 i .w" Q Ewi
! £
g ! Wvibb S Wvibb
< 80 - [[wce < [wee
| Wwc .Wc
[DZiets EZets
mww Eww
60 |- = Wviz
Wzz Wz
40
20
s 1 A
0 l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
0 20 40 60 a0 100 120 140 160 180 200 WZ BN N OUtpUt

Dijet mass (GeV/c?)

We fit for the total W Z cross section distributions which yields o(WZ2) = 5.63+" %2 pb. We simultaneously fit

all of the tag and lepton categories, but only use the two-jet events for this measurement. Fig. 6 shows the posterior
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TeVatron Combination: Channels

TABLE I. Luminosities, explored mass ranges, and references for the different processes and final states (£ = e¢ or u, and Ty,q PRD88,O52014(201 3)
denotes a hadronic tau-lepton decay) for the CDF analyses. The generic labels “1 X, “2 X ) “3 X ,” and “4X”’ refer to separations

based on lepton or photon categories. The analyses are grouped in five categories, corresponding to the Higgs boson decay mode to

which the analysis is most sensitive: H — bb, H— W*W~, H— 77—, H— yy, and H — ZZ.

Luminosity = my range

Channel (b1 (GeV/c?)  Reference
WH — {vbb 2-jet channels 4 X (5h-tag categories) 9.45 90-150 [42]
WH — £vbb 3-jet channels 3 X (2b-tag categories) 9.45 90-150 [42]
ZH — viobb (3b-tag categories) 945 90-150 [43]
ZH — €€~ bb 2-jet channels 2 X (4b-tag categories) H — bb 9.45 90-150 [44]
ZH — €€~ bb 3-jet channels 2 X (4b-tag categories) 9.45 90-150 [44]
WH + ZH — jjbb (2b-tag categories) 9.45 100-150 [45]
ttH — W bW~ bbb (4jets, 5 jets, = 6 jets) X (5h-tag categories) 9.45 100-150 [46]
H— W W~ 2 X (0jets) + 2 X (1jet) + 1 X (= 2jets) + 1 X (low-rmgp) 9.7 110-200 [47]
H— W"W™ (e-Thaq) T (U-Thaa) 9.7 130-200 [47]
WH — WW* W~ (same-sign leptons) + (trileptons) H—Wtw~ 9.7 110-200 [47]
WH — WW* W~ (trileptons with 17,4) 9.7 130-200 [47]
ZH — ZW* W~ (trileptons with 1 jet, = 2 jets) 9.7 110-200 [47]
H— 7777 (1jet) + (= 2jets) H— 177" 6.0 100-150 [48]
H— yy 1X(0jet) + 1 X (= 1jet) + 3 X (all jets) H— vy 10.0 100-150 [49]
H — ZZ (four leptons) H—Z7Z7 9.7 120-200 [50]

TABLE II. Luminosities, explored mass ranges, and references for the different processes and final states (€ = e or w, and 7y,
denotes a hadronic tau-lepton decay) for the DO analyses. The generic labels “1 X ,”” “2 X )7 “3 X ) and *“4X” refer to separations
based on lepton, photon, or background characterization categories. The analyses are grouped in four categories, corresponding to the
Higgs boson decay mode to which the analysis is most sensitive: H — bb, H— W*W~, H— 777", and H — yv.

Luminosity mpy range

Channel (b~ 1 (GeV/c?) Reference
WH — ¢ vblE 2-jet channels 2 X (4b-tag categories) 9.7 90-150 [51,52]
WH — €vbb 3-jet channels 2 X (4b-tag categories) H— bi 9.7 90-150 [51,52]
ZH — vvbb (2b-tag categories) 9.5 100-150 [53]
ZH — €€ bb 2 X (2b-tag) X (4lepton categories) 9.7 90-150 [54,55]
H— WW™ = 022071 2 X (Ojets, 1 jet, = 2 jets) 9.7 115-200 [56]
H+X—W'W™ — u* v v (37 categories) 7.3 115-200 [57]
H— WYW~ — {€pjj 2 X (2b-tag categories) X (2 jets, 3 jets) He W W 9.7 100-200 [52]
VH — e*u* + X 9.7 100-200 [58]
VH — €00 + X (e, 3 X epp) 9.7 100-200 [58]
VH — £5jjjj 2 X (= 4jets) 9.7 100-200 [52]
VH = ThagThaatt + X (37 categories) He 7t 8.6 100-150 [58]
H+ X — {5717 4jj 2 X (37 categories) 9.7 105-150 [59]
H — yvy (4 categories) H— vyy 9.6 100-150 [60]
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A side note

|&d Selected for a Viewpoint in Physics week ending
PRL 109, 071804 (2012) PHYSICAL REVIEW LETTERS 17 AUGUST 2012

S

Evidence for a Particle Produced in Association with Weak Bosons and Decaying
to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatron

We combine searches by the CDF and DO Collaborations for the associated production of a Higgs
boson with a W or Z boson and subsequent decay of the Higgs boson to a bottom-antibottom quark pair.
The data, originating from Fermilab Tevatron pp collisions at /s = 1.96 TeV, correspond to integrated
luminosities of up to 9.7 fb~!. The searches are conducted for a Higgs boson with mass in the range
100-150 GeV/c?. We observe an excess of events in the data compared with the background predictions,
which is most significant in the mass range between 120 and 135 GeV/c?. The largest local signi-
ficance i1s 3.3 standard deviations, corresponding to a global significance of 3.1 standard deviations.
We interpret this as evidence for the presence of a new particle consistent with the standard model Higgs
boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom
quark pair.

the exclusion limits for the SM Higgs boson mentioned
earlier, there is no LEE and we derive a significance of 2.8
standard deviations for my = 125 GeV/c?.

154 We interpret this result as evidence for the presence of a
1 [ J#2sd. particle that is produced in association with a W or Z boson
and decays to a bottom-antibottom quark pair. The excess
seen in the data is most significant in the mass range
between 120 and 135 GeV/c?, and is consistent with
production of the SM Higgs boson within this mass range.
Assuming a Higgs boson exists in this mass range, these
results provide a direct probe of its coupling to b quarks.

— 1-CL b Observed
..... 1-CL, Expected

10

Background p-value
s o
N —_
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&
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TeVatron Combination: Results
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TeVatron Combination: LLR
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TeVatron Combination: Upper Limit
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TeVatron Combination: p-value
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TeVatron Combination: Best Fit Signal/Individual Limits
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TeVatron Combination: Best Fit Signal Overview

Tevatron Run II, L. <10 fb™
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TeVatron Combination: Combination

X. CONCLUSIONS

The search for the standard model Higgs boson at the
Tevatron is challenging due to the small expected signal
and the need to accurately model large background con-
tributions. We have developed advanced tools to search
for the Higgs boson in the leading production and decay
modes predicted by the SM and control the impact of
systematic uncertainties using constraints from the ob-
served data. We have combined searches by the CDF
and DO Collaborations for the standard model Higgs
boson in the mass range 90-200 GeV/c? using Tevatron
pp collision data corresponding to up to 10 fb~! of
integrated luminosity collected at /s = 1.96 TeV. The
results of searches focusing on the H — bb, H —
W*W-, H—ZZ, H— 7 77, and H— yy decay
modes are included in the combination. The results are
also interpreted in fermiophobic and fourth generation
models. Fermiophobic Higgs bosons in the mass range
100-116 GeV/c? are excluded at the 95% C.L., and a
SM-like Higgs boson in the presence of a fourth sequen-
tial generation of fermions is excluded in the mass range
121-225 GeV/c? at the 95% C.L. The SM Higgs boson is
excluded, at the 95% C.L., from 90 to 109 GeV/c?, and
from 149 to 182 GeV/c?. The expected exclusion regions
in the absence of signal are 90-120 GeV/c? and
140-184 GeV/c?. The results of the H — bb searches
were validated through a measurement of the diboson
(WZ + ZZ) production cross section using the same

data samples and analysis techniques, treating those
diboson processes as signal. The resulting diboson
cross-section measurement is in agreement with the SM
prediction. We observe a significant excess of events in
the mass range between 115 and 140 GeV/c?. The local
significance at my = 125 GeV/c? corresponds to 3.0
standard deviations, with a median expected significance,
assuming the SM Higgs boson is present at my =
125 GeV/c?, of 1.9 standard deviations, with a best-fit
signal strength of 1.44J_r8:§2 times the SM expectation.
We also separately combined searches focusing on the
H—bb, H— W'W~, H— 777, and H — yvy decay
modes. The observed best-fit signal strengths obtained
from each of these combinations are consistent with
the expectations for a SM Higgs boson at my =
125 GeV/c?. We performed tests of the compatibility of
the observed excess with the expectations for the cou-
plings of a SM Higgs boson and saw no significant
deviations.
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TeVatron: Improvement beyond luminosity increase
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Achieved and projected median expected upper limits on the SM Higgs boson cross section, by date.

The solid lines are 1/sqgrt(L) projections.

The top of the orange band corresponds to the Summer 2007 performance expected limit divided by 1.5, and the bottom
of the orange band corresponds to the Summer 2007 performance expected limit divided by 2.25.

The luminosity for the March 2012 point is 9.5 fb1, a sensitivity-weighted average of the contributing channels' analyzed
luminosities.

And this is the legacy of the TeVatron, not only discovered the top-quark and made several other observations and great
measurements (mt, mw), but also the powerful multivariate techniques that have been developed and boosted the
sensitivity of the analyses beyond what was thought to be feasible.
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