Run Number: 183003, Event Number: 121099951 Date: 2011-06-02, 10:08:24 CET EtCut>0.3 GeV PtCut>2.5 GeV

Cells:Tiles, EMC

PP7 - Higgs Boson Physics The discovery of a SM-like Higgs boson at the LHC

K. Nikolopoulos University of Birmingham

EXPERIMENT

MPAGS January, 2014

THE A

UNIVERSITY^{OF} BIRMINGHAM

But we know how to do this!

Experimental particle physics is all about colliding particles and observing the result!

smaller distances ↔ higher collision energies

Interactions between constituents of the protons, carrying fraction of nominal Centre-of-Mass Energy

Higgs boson production

K. Nikolopoulos

Aerial view of CERN site

K. Nikolopoulos

Δ

CERN Timeline: A versatile fundamental research program

- 1954 CERN was founded
- 1957 Synchrocyclotron (SC), first accelerator, begins operation
- **1959** Proton Synchrotron (PS) begins operation
- **1968** Georges Charpak invents multiwire proportional chamber (Nobel Prize 1992)
- **1971** Intersecting Storage Rings (ISR) starts operation (first pp collider)
- **1973** Discovery of Neutral Currents first confirmation of electroweak theory (today known as the Standard Model)
- 1976 Super Proton Synchrotron (SPS) begins operation
- **1983** Discovery of W and Z particles
- 1984 Nobel Prize: C. Rubbia and S. v. der Meer for W and Z
- 1984 First ideas on LHC
- **1989** Large Electron Positron collider (LEP) begins operation; confirms existence of only 3 neutrino families
- 1989 Tim Berners-Lee invents the World Wide Web
- **1993** Precise results on CP violation;
 - difference between matter and antimatter
- **1995** First observation of antihydrogen
- **1999** Construction of Large Hadron Collider (LHC) begins
- **2000** Creation of quark-gluon plasma, new state of matter
- **2002** First results on antihydrogen atoms
- 2008 The LHC start-up
- 2010 The real LHC start-up...
- 2012 Discovery of a Higgs-like boson

00

LARGE HADRON COLLIDE IN THE LEP TUNNEI

CEEDINGS OF THE ECFA-CERN WO

ALEPH DELPHI

average measurements error bars increased by factor 10

88

90

92

E_{cm} [GeV]

L3 **OPAL**

86

^σhad [nb]

20

10

LHC

CERN accelerator complex

Maximizing the return of the investment by exploiting already existing infrastructure as much as possible!

The Large Hadron Collider

1232 superconducting dipoles with a field of 8.3T 1.9K → the coolest place in the universe!

Parameter (Design)	LHC
Centre-of-mass Energy	7/8 (14) TeV
Bunches/Beam	1854/1380(2808)
Luminosity	3.65·10 ³³ /7.7·10 ³³ (1·10 ³⁴) cm ⁻² m ⁻¹
Bunch Spacing	50 (25) ns

K. Nikolopoulos

Higgs boson decays

Higgs boson is rather short-lived, decaying through different channels!

ATLAS and CMS Detectors

ATLAS Collaboration: 38 countries, 177 institutions, ~2900 scientific authors

K. Nikolopoulos

Higgs Boson Physics

UNIVERSITY^{OF} BIRMINGHAM 9

A Toroidal LHC ApparatuS

⇒ General purpose detector designed for the harsh LHC environment

	ATLAS
Magnets	2T solenoid, 3 air-core toroids
Tracking	silicon + transition radiation tracker
EM Calorimetry	sampling LAr technology
Hadron Calorimetry	plastic scintillator (barrel) LAr technology (endcap)
Muon	independent system with trigger capabilities
Trigger	3 Level Implementation from 40 MHz to 400 Hz

 \Rightarrow Very important to ensure high data-taking efficiency/quality

K. Nikolopoulos

High Energy Physics Particle detectors

K. Nikolopoulos

Higgs Boson Physics

UNIVERSITY^{of} BIRMINGHAM 11

Inner Detector

K. Nikolopoulos

Muons and Electrons

Photons

Jets and Missing ET

т-leptons and b-jets

The **T**-lepton is special!

Mass of 1.78 GeV and $cT = 87.1 \mu m$,

- Jets + trackthesod by lepton athath dieleases in our
 - energy from /detector, in various ways...
 - energy scale from isolated by on data
- Analyses presented here had folds ~ 65% working point selects 60% of τ_{had}
- selects few% of QCD jets and <1% of electrons

The $H \rightarrow ZZ \rightarrow 4I$ as an example analysis

$pp \rightarrow H \rightarrow ZZ \rightarrow \mu^{+}\mu^{-}e^{+}e^{-}$

H→ZZ^(*)→4I: Event Selection

Run Number: 182747, Event Number: 63217197

Date: 2011-05-28 13:06:57 CEST

Tracking and calorimeter isolation
Impact Parameter (IP) significance

Two same-flavor opposite-sign di-leptons (e/μ)
pT^{1,2,3,4} > 20, 15, 10, 7 GeV (6 GeV for μ)
Single lepton and di-lepton triggers

H→ZZ^(*)→4I (I=e,µ) Backgrounds ZZ^(*)→41 and for m_{4I}<2m_Z Z+jets (Z+light jets/Zbb) and tt

 $\begin{array}{l} 50 \ GeV < m_{12} < 106 \ GeV, \\ m_{thr}(m_{4l}) < m_{34} < 115 \ GeV \ m_{thr} = 12 - 50 \ GeV \\ \rightarrow \ all \ same-flavor \ opposite-sign \ pairs \ m_{ll} > 5 \ GeV \\ \rightarrow \ \Delta R(l,l') > 0.10(0.20) \ for \ all \ same(different)-flavor \end{array}$

K. Nikolopoulos

Higgs Boson Physics

January, 2014 🚪

$ee\mu\mu$ candidate with $m_{4l} = 123.9$ GeV

K. Nikolopoulos

Higgs Boson Physics

UNIVERSITY^{OF} BIRMINGHAM 20

$\mu\mu\mu\mu$ candidate with m_{41} = 123.5 GeV

K. Nikolopoulos

H→ZZ^(*)→4I: Backgrounds

K. Nikolopoulos

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Results

K. Nikolopoulos

Higgs Boson Physics

BIRMINGHAM 23

The discovery papers!

716

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC $\stackrel{\text{\tiny{$\widehat{}}}}{}$

ATLAS Collaboration*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ABSTRACT

ARTICLE INFO

Article history Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: W.-D. Schlatter

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb-1 collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ±0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

Physics Letters B 716 (2012) 30-61

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*

CMS Collaboration*

CERN, Switzerland

Article history

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

ABSTRACT

ARTICLE INFO

Received 31 July 2012 Received in revised form 9 August 2012 Accepted 11 August 2012 Available online 18 August 2012

Editor: W.-D. Schlatter Keywords CMS Physics Higgs

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. © 2012 CERN. Published by Elsevier B.V. All rights reserved.

K. Nikolopoulos

ELSEVIER

Higgs boson decays

As many as possible of the potential final states of the newly found particle should be studied!

Η→γγ

- Sensitive for low m_H (110 150 GeV)
- \bullet Search for narrow peak in $m_{\gamma\gamma}$
 - Background from data
 - Categorize wrt S/B and resolution
- Main Backgrounds:
 - \rightarrow di-photon \rightarrow m_{YY} resolution
 - \rightarrow jj and $\gamma j \rightarrow$ photon-ID

 π^0 - γ Rejection

 π^{c}

K. Nikolopoulos

H→γγ: Event Categories

Improve the overall S/B of the analysis, and enhance particular signal contributions for properties studies

K. Nikolopoulos

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ spectra

H→γγ: Results

Most significant deviation from background only hypothesis at m_H =126.5 GeV:

- Local significance: 7.4 σ (with 4.1 σ expected) @ m_H=126.5 GeV
 - Inclusive analysis: 6.1σ (with 2.9σ expected)
- Mass measurement: 126.8 ± 0.2 (stat) ± 0.7 (syst) GeV
 - Main systematics: γ energy scale from Z \rightarrow ee, material modeling and presampler energy scale \rightarrow 0.6 GeV
- Rate with respect to Standard Model: 1.65 ± 0.24 (stat)+0.25-0.85
 - 2.3 σ deviation from the Standard Model

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Results of Event Selection

K. Nikolopoulos

$H \rightarrow ZZ^{(*)} \rightarrow 4I:$ Couplings

The couplings of the Higgs boson are probed by further categorizing the observed events.

- VBF-like events : Events with at least two jets in VBF topology
- VH-like events : Events with additional leptons in the final state
- ggF-like events: All remaining events

K. Nikolopoulos

The Higgs boson mass

$H \rightarrow ZZ^{(*)} \rightarrow 4I/H \rightarrow \gamma\gamma$: m_H and Γ_H measurement

Indirect Γ_H measurement: Introduction

Off-shell production of Higgs boson provides indirect constraint to $\Gamma_{\rm H}$

$$\frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}, \text{SM}}^{gg \to H \to ZZ}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$

Implemented with $H \rightarrow ZZ$ with the following assumptions:

- \rightarrow Backgrounds insensitive to new physics modifying off-shell couplings
- \rightarrow Running of couplings similar for on-shell/off-shell region
- \rightarrow Use inclusive selections [where HO corrections available]

→ gg→ZZ K-factors in off-shell region unknown [for signal known to NNLO, gg→WW at NLO indicates that K-factors may be of similar magnitude, see later]

Similar assumptions to the one used for the coupling studies with the K-factor framework

Indirect Γ_H measurement: Analysis

K. Nikolopoulos

ATLAS Higgs boson properties using decays in bosons Aug 1st, 2014

UNIVERSITY^{OF} BIRMINGHAM 37

Indirect Γ_H measurement: Results

Results are expressed as a function of the unknown K-factor for the $gg \rightarrow ZZ$ background.

Assuming background K-factors same as for signal:

- Γ_{H}/Γ_{SM} < 4.8 (5.8) at 95% CLs with alternative hypothesis R^B_{H*}=1, Γ_{H}/Γ_{SM} =1 and $\mu_{on-shell}$ =1.51
- $\Gamma_{\rm H}/\Gamma_{\rm SM}$ < 5.7 (8.5) at 95% CLs with alternative hypothesis R^B_{H*}=1, $\Gamma_{\rm H}/\Gamma_{\rm SM}$ =1 and $\mu_{\rm on-shell}$ =1.00

$H \rightarrow WW^{(*)} \rightarrow I V I V$

- Sensitive in wide mass range
- Also very complicated
 - no mass peak
 - uses all ATLAS components!
- Signature is II + MET
- \bullet Observables: $m_{I\!I}$ and m_T
- Backgrounds: WW, top, W/Z+jets
- Separate final states:
 - lepton flavors: μe, eμ, μμ, ee
 - jet multiplicities: 0, 1, ≥2

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

 $m_{\rm T} = ((E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{E}_{\rm T}^{\rm miss}|^2)^{1/2} \text{ with } E_{\rm T}^{\ell\ell} = (|\mathbf{p}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2)^{1/2}$

K. Nikolopoulos

Higgs Boson Physics

January, 2014 🕌

UNIVERSITYOF

BIRMINGHAM 40

Local significance at m_H =140GeV is 4.1 σ Local significance at m_H =125GeV is 3.8 σ Rate with respect to SM: 1.01 ± 0.31 @ m_H=125 GeV

H→bb

ATLAS-CONF-2013-079

- Largest BR but very high background
- Exploit associated production with W or Z
 - Final states with leptons, MET and b-jets
- Backgrounds: W/Z+jets and top
- Final discriminant m_{bb}
- Separate final states:
 - number of leptons: 0, 1, 2
 - P_T(V) or MET
 - number of jets
 - 26 signal bins in total
 - + 27 control regions

observation at 4.8 σ (5.1 σ) of VZ(\rightarrow bb) production

W

K. Nikolopoulos

An overview of ATLAS Higgs boson measurements

Jan 22nd, 2014

H→bb

K. Nikolopoulos

An overview of ATLAS Higgs boson measurements

UNIVERSITY^{OF} BIRMINGHAM 44

250

Н⊸тт

- This channel is directly sensitive to the τ Yukawa coupling
- Expected to be the first channel to give direct evidence for coupling to leptons.
- Search in three sub-channels
- TlepTlep BR~12% -> 2lepton
- тlepтhad BR ~46% -> 1lepton
- ThadThad BR~42%->0lepton
- Background
- Z->TT dominant estimated from data using the embedding technique "Fakes": Multijet, W+jets, top from dta "Other": Diboson produciton and H->WW* from MC

Analysis performed using Boosted Decision Tree Variables, include properties of the di-tau system, jet topology, and event activity Two categories: VBF : 2 jets with large pseudorapidity separation Boosted: events failing the VBF category, bith with large di-tau pT

K. Nikolopoulos

An overview of ATLAS Higgs boson measurements Jan 22nd, 2

Jan 22nd, 2014 🛛 🕌

Н→тт

Rates/Couplings

Phys. Lett. B 726 (2013), pp. 88-119

Overview: Rate/Mass measurements

K. Nikolopoulos

Higgs Boson Physics

January, 2014 🚪

Signal strength for production mechanisms

UNIVERSITYOF BIRMINGHAM 50

 $\mu_{VBF} / \mu_{ggF+ttH}$

3.5

3

2.5

Effective Lagrangian

J. R. Espinosa et al. Higgs Hunting 2012 (arXiv:1207.1717[hep-ph])

Solvalid at
$$E \approx M_{t}$$
.
Field content: $SM + 3calar h$ (no extra light states)
 $S = S[h] - (M_{w}^{2}W_{\mu}^{\mu}W^{\tau} + \frac{1}{2}M_{z}^{2}Z_{\mu}Z^{\mu})[1 + 2a\frac{h}{v} + O(h^{2})]$
 $- M_{\psi_{i}}\Psi_{i}\Psi_{i}[1 + c\frac{h}{v} + O(h^{2})] + ...$ Contine et al
 $n_{\psi_{i}}\Psi_{i}\Psi_{i}[1 + c\frac{h}{v} + O(h^{2})] + ...$ Contine et al
 $n_{O'12}$
Incorporates $SU(2)_{z}U(1)_{y} \rightarrow U(1)_{em}$ breaking
 $S = S[h] - (M_{w}^{2}W_{\mu}^{\mu}W^{\tau} + \frac{1}{2}M_{z}^{2}Z_{\mu}Z^{\mu})[1 + 2a\frac{h}{v} + O(h^{2})]$
 $- M_{\psi_{i}}\Psi_{i}[1 + c\frac{h}{v} + O(h^{2})] + ...$ Ky Contine et al
 $n_{\psi_{i}}\Psi_{i}[1 + c\frac{h}{v} + O(h^{2})] + ...$ Ky Contine et al
 $n_{U}^{2}\Psi_{i}[1 + c\frac{h}{v} + O(h^{2})] + ...$ Ky Contine et al

UNIVERSITY^{of} BIRMINGHAM 51

Spin/CP

K. Nikolopoulos

ATLAS Spin/CP studies: The channels

Channel	$H \to ZZ^{(*)} \to 4\ell$	$H \to WW^{(*)} \to \ell \nu \ell \nu$	$H \rightarrow \gamma \gamma$		
Dataset	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$		
	$4.8 \text{ fb}^{-1} @ 7 \text{ TeV}$				
Reference	ATLAS-CONF-2013-013	ATLAS-CONF-2013-031	ATLAS-CONF-2013-029		
Signal	JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA		
Tested Hypotheses					
0-	\checkmark	_	_		
1+	\checkmark	\checkmark	_		
1-	\checkmark	\checkmark	_		
2^+	\checkmark	\checkmark	\checkmark		

Spin Combination

- ZZ+WW+vv
- ATLAS-CONF-2013-040
- Phys. Lett. B 726 (2013), pp. 120-144

Production modes

- spin-0 : ggF (qqbar annihilation negligible)
- spin-1 : qqbar annihilation

spin-2 : ggF & qqbar annihilation

For the Graviton inspired tensor with minimal couplings to SM, ggF dominates with qqbar ~4%, but higher order QCD corrections may significantly modify this \rightarrow scan f_{qqbar}

VBF and VH production modes:

- yy : included in the analysis
- 4I : VBF production does not modify kinematics IvIv: negligible contribution

Statistical Treatment

$$\mathcal{L}\left(J^{P},\mu,\theta\right) = \prod_{j}^{N_{channel}} \prod_{i}^{N_{bins}} P\left(N_{i,j}|\mu_{j}S_{i,j}^{(J^{P})}\left(\theta\right) + B_{i,j}\left(\theta\right)\right) \times \mathcal{A}_{j}\left(\theta\right)$$

The test statistic is the ratio of profiled likelihoods (LLR) between the two hypotheses, nuisance parameters profiled separately for each hypothesis

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})}$$

The test statistic distribution for each hypothesis is extracted from ensemble tests (pseudo-experiments using the profiled values for nuisance parameters) and the CLs is built

$$CL_s(J_{alt}^P) = \frac{p_0(J_{alt}^P)}{1 - p_0(0^+)}$$

Note: μ_{SM} and μ_{JP} profiled independently (ie no assumptions on production rates)

$H \rightarrow \gamma \gamma$: Introduction

- Analysis similar to "rate/mass" analysis but optimized selection:

-
$$p_{T\gamma1}$$
>0.35 $m_{\gamma\gamma}$ and $p_{T\gamma2}$ >0.25 $m_{\gamma\gamma}$

[Minimize $m_{\gamma\gamma}$ and $cos\theta^*$ correlations for background]

$H \rightarrow \gamma \gamma$: Fit Procedure

 $H \rightarrow \gamma \gamma$ is a low S/B final state (inclusive ~3%)

- Simultaneous fit to $m_{\gamma\gamma}$ and $|cos\theta^*|$ in signal region

- $m_{\gamma\gamma}$ in side-bands

Higgs boson physics with ATLAS

$H \rightarrow \gamma \gamma$: Fit results 0⁺ vs 2⁺

Data differ slightly, owing to the background being determined separately for each spin hypothesis

$H \rightarrow \gamma \gamma$: LLR 0⁺ vs 2⁺

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

H→ZZ→4I: Introduction

Two approaches:

- Train BDT separately for each hypothesis
- Use ME corrected for acceptance and pairing effects

H→ZZ→4I: Input Variables

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

$H \rightarrow ZZ \rightarrow 4I$: Distribution of discriminant

$H \rightarrow ZZ \rightarrow 4I : LLR 0^+ vs 0^-$

$H \rightarrow ZZ \rightarrow 4I$: Results Overview

 10_{I}

9

ATLAS $8 \stackrel{L}{\longrightarrow} H \rightarrow ZZ^{(*)} \rightarrow 4I$ Spin 0 Data $\sqrt{s} = 7 \text{ TeV} \int Ldt = 4.6 \text{ fb}^{-1}$ Signal hypothesis 1σ 2σ $6 \frac{1}{100} \sqrt{s} = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-1}$ • J^P = 0⁺ • $J^{P} = 2^{+}$ Main Systematic: - High S/B vs Low S/B regions normalization (~10%) 2 owing to the uncertainty on m_H 0 -2 25 50 75 100 0 $f_{q\overline{q}}$ (%) 0^{-} assumed 0^+ assumed Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 0^-)$ $CL_{s}(J^{P} = 0^{-})$ Channel Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 0^-)$ $3.7 \cdot 10^{-3}$ $1.5 \cdot 10^{-3}$ 97.8% $H \rightarrow ZZ^*$ 0.31 0.015 0.022 0^+ assumed 1⁻ assumed Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 1^-)$ $CL_{s}(J^{P} = 1^{-})$ Channel Exp. $p_0(J^P = 1^-)$ Exp. $p_0(J^P = 0^+)$ $0.9 \cdot 10^{-3}$ $3.8 \cdot 10^{-3}$ $H \rightarrow ZZ^*$ 0.15 0.051 0.060 94.0% All alternative hypotheses 1⁺ assumed 0^+ assumed are disfavored with respect $\operatorname{CL}_{\operatorname{s}}(J^P=1^+)$ Obs. $p_0(J^P = 1^+)$ Obs. $p_0(J^P = 0^+)$ Channel Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 1^+)$ to the 0⁺ hypothesis. $2.0 \cdot 10^{-3}$ $H \rightarrow ZZ^*$ $4.6 \cdot 10^{-3}$ $1.6 \cdot 10^{-3}$ 0.55 $1.0 \cdot 10^{-3}$ 99.8% $H \rightarrow ZZ^*$ 2^+ assumed assumed 0^+ assumed $CL_{s}(J^{P} = 2^{+})$ Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 2^+)$ $f_{q\bar{q}}$ Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 2^+)$ 97.4% 100% 0.102 0.082 0.962 0.001 0.026 96.1% 75% 0.117 0.099 0.003 0.039 0.923 96.5% 50% 0.129 0.113 0.943 0.002 0.035 96.4% 25% 0.125 0.107 0.944 0.002 0.036 0% 0.099 0.092 0.532 0.079 0.169 83.1%

$H \rightarrow WW \rightarrow IvIv$: Introduction

- Restricted to "different flavour" (eµ) events and no jets
 - p_{TI1}>25 GeV and p_{TI2}>15 GeV
 - p_{Ti}>25 GeV for |η|<2.5 (p_{Ti}>30 GeV for 2.5<|η|<4.5)
- Rate analysis already exploits spin-0 nature of SM Higgs boson
 - Relax spin-sensitive requirements
 - (allow spin study while keeping backgrounds under control)
 - E⊤MissRel > 20 GeV
 - m_{ll} < 80 GeV
 - pTII > 20 GeV
 - $-\Delta \phi_{\parallel} < 2.8$
- m_{II} , $\Delta \phi_{II}$, p_{TII} , m_T sensitive to spin
- Two BDT classifiers are used:
 - BDT₀₊: SM Higgs signal against the sum of all backgrounds
 - BDT_{JP}: J^P signal against the sum of all backgrounds
 - Perform 2D-fit in (BDT₀₊,BDT_{JP})
- pT spectrum uncertainties found to have small effect BDT_{JP}

H→WW→lvlv: Spin/CP sensitive variables

November 18th, 2013 Higgs boson physics with ATLAS

H→WW→IvIv: BDT output

H→WW→lvlv : Post-fit output

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

UNIVERSITY^{of} BIRMINGHAM 68

$H \rightarrow WW \rightarrow IvIv: LLR 0^+ vs 1^\pm and 2^+$

H→WW→lvlv: Results Overview

Channel	1 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^+)$	$CL_{s}(J^{P} = 1^{+})$	-
$H \rightarrow WW^*$	0.11	0.08	0.70	0.02	0.08	92%
Channel	1 ⁻ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^-)$	$CL_{s}(J^{P} = 1^{-})$	-
$H \rightarrow WW^*$	0.06	0.02	0.66	0.006	0.017	98.3%

 $H \rightarrow WW^*$

$f_{q\bar{q}}$	$2^+ \text{ assumed} \\ \text{Exp. } p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{P} = 2^{+})$	
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$	>99 9%
75%	0.028	0.003	0.586	0.001	0.003	99.7%
50%	0.042	0.009	0.616	0.003	0.008	99.2%
25%	0.048	0.019	0.622	0.008	0.020	98.0%
0%	0.086	0.054	0.731	0.013	0.048	95.2%

All alternative hypotheses are disfavored with respect to the 0⁺ hypothesis.

Combination

Channel	$H \to ZZ^{(*)} \to 4\ell$	$H \to WW^{(*)} \to \ell \nu \ell \nu$	$H o \gamma \gamma$
Dataset	$20.7 { m ~fb^{-1}} @ 8 { m ~TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 { m ~fb^{-1}} @ 8 { m ~TeV}$
	$4.8 { m ~fb^{-1}} @ 7 { m ~TeV}$		
Reference	ATLAS-CONF-2013-013	ATLAS-CONF-2013-031	ATLAS-CONF-2013-029
Signal	JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA
0-	\checkmark	_	-
1+	\checkmark	\checkmark	-
1-	\checkmark	\checkmark	-
2^+	\checkmark	\checkmark	\checkmark

A note on systematic uncertainties:

- e/µ reconstruction, identification and trigger efficiencies and energy/momentum

resolution uncertainties correlated between $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow WW^* \rightarrow IvIv$

- e/γ energy scale correlated across all channels
- effect of mass measurement uncertainty negligible
- overall impact (by comparing results w/ and w/o profiling) estimated to be $<0.3\sigma$
- Higgs boson p_T spectrum small effect <0.1σ

Combination: The case of 0⁺ vs 2⁺

K. Nikolopoulos

November 18th, 2013 Higgs boson physics with ATLAS
"Rare" Higgs boson decays

"Invisible" Higgs boson decays

"Invisible" decays are suppressed in SM \rightarrow Observation would be direct indication of New Physics!

Summary

Convinced, beyond reasonable doubt, of the observation of a boson with $m_H \sim 125.5$ GeV

Production rates in channels involving vector bosons in good agreement with Standard Model expectation.

[Large couplings with W[±] and Z⁰, coupling through loops to the photon]

Studies of its spins strongly disfavor the hypothesis of non 0⁺ pure state

The new particle is a Higgs boson

T-leptons coupling direct evidence, b-quarks coupling indications and top-quark coupling indirect evidence It's a Standard Model-like Higgs boson

Summary

K. Nikolopoulos

Additional slides

An analogy

The Higgs boson has been the holy grail of particle physics for the last four decades!

Evolution of the $H \rightarrow ZZ^{(*)} \rightarrow 4I$ excess

Future of LHC

Muons and Electrons

K. Nikolopoulos

Higgs Boson Physics

UNIVERSITY^{of} BIRMINGHAM 81

Photons

Jets and Missing ET

BIRMINGHAM 83

т-leptons and b-jets

The **T**-lepton is special!

Mass of 1.78 GeV and $cT = 87.1 \mu m$,

- Jets + trackthesod by lepton athath dieleases in our
 - energy from /detector, in various ways...
 - energy scale from isolated by on data
- Analyses presented here had folds ~ 65% working point selects 60% of τ_{had}
- selects few% of QCD jets and <1% of electrons

esday, 6 March 2013 K. Nikolopoulos

Higgs Boson Physics

An analogy

In the SM electromagnetic and weak interactions unified through SU(2)_L⊗U(1)_Y, with massless carriers Symmetry spontaneously broken through the non-vanishing vacuum expectation value of the Higgs field. Three of the four degrees of freedom of the Higgs field are becoming the longitudinal polarizations of the vector bosons, the fourth is the Higgs boson → excitation of the vacuum needs energy, it's a massive particle. The fermions couple to Higgs boson proportionally to their mass through Yukawa couplings.

The Higgs boson has been the holy grail of particle physics for quite the last three decades!

$H \rightarrow \gamma \gamma$: Results

Most significant deviation from background only hypothesis at m_{H} =126.5 GeV:

- Local significance: 7.4 σ (with 4.1 σ expected) @ m_H=126.5 GeV
 - Inclusive analysis: 6.1σ (with 2.9 σ expected)
- Mass measurement: 126.8 ± 0.2 (stat) ± 0.7 (syst) GeV
 - Main systematics: γ energy scale from Z \rightarrow ee, material modeling and presampler energy scale \rightarrow 0.6 GeV
- Rate with respect to Standard Model: 1.65 ± 0.24 (stat)^{+0.25}-0.85

$H \rightarrow \gamma \gamma$: Signal Strength

Signal strength (μ) = (signal rate from data) / (expected SM signal rate at m_H)

K. Nikolopoulos

Higgs Boson Physics

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Couplings

- The couplings of the Higgs boson can be probed by further categorising the observed events.
 - VBF-like events : Events with at least two jets in VBF topologyTwo jets with
 - VH-like events : Events with additional leptons in the final state
 - ggF-like events: All remaining events

Higgs boson mass: $H \rightarrow WW^* \rightarrow IvIv$ and $H \rightarrow \tau\tau$

H→ZZ^(*)→4I: Mass Measurement

• Mass: 124.3^{+0.6}-0.5(stat)^{+0.5}-0.3(syst) GeV

• Main systematics: electron/muon energy/momentum scale uncertainties

• Muon and electron dominated final states in agreement within the (large) statistical uncertainties

$H \rightarrow WW^{(*)} \rightarrow VVV$

K. Nikolopoulos

Higgs Boson Physics

H→WW^(*)→evµv +2 jet Event Display

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

K. Nikolopoulos

Higgs Boson Physics

January, 2014 🦉

$H \rightarrow WW^{(*)} \rightarrow IvIv:$ Results 2011+2012

Н⊸тт

- Most promising channel to directly probe Higgs boson coupling to leptons
- Observables: m_{TT}
- Backgrounds: $Z \rightarrow \tau \tau$, top
- Separate final states:
 - **T-decays: μe, μμ, eth, μth, thth**
 - jet multiplicities: 1, 2
- Relatively poor mass resolution due to the neutrinos

- Maximum likelihood method used to improve resolution
 - Using on event-by-event basis the fourmomenta of the visible decay products, MET, and expected MET resolution
 - Integrating over unconstrained d.o.f.
- Obtain 15-20% resolution on $m_{\tau\tau}$

Expected E

Resolution

H→TT: Results

H→bb

Similar to VH but with x5 in cross-section (W/Z)(Z \rightarrow bb) observation significance : 4.0 σ μ_D = 1.09 ± 0.20 (stat) ± 0.22 (syst)

Overview: Mass measurement

Using the high resolution channels only The ATLAS and CMS mass combinations are in good agreement

Overview: Coupling studies

Assumptions

- the resonance corresponds to a CP-even boson
 - no contributions beyond the Standard Model
- deviations of vector boson couplings to the Higgs described by one overall scaling (κ_V)
 - deviations of fermion couplings to the Higgs described by one overall scaling (κ_F)

Data compatible with the Standard Model expectation for both experiments

K. Nikolopoulos

Higgs Boson Physics

Overview: Coupling studies

Assuming that:

- the resonance corresponds to a CP-even boson

- no contributions beyond the Standard Model

- deviations of vector boson couplings to the Higgs described by one overall scaling (κ_V)
 - deviations of fermion couplings to the Higgs described by one overall scaling (κ_F)

Data compatible with the Standard Model expectation for both experiments

K. Nikolopoulos

Higgs Boson Physics

"Invisible" Higgs boson decays

"Invisible" decays are suppressed in SM \rightarrow Observation would be direct indication of New Physics!

An analogy for the Higgs mechanism

K. Nikolopoulos

Higgs Boson Physics

UNIVERSITY^{of} BIRMINGHAM

An analogy for the Higgs mechanism

In the SM the electromagnetic and weak interactions are unified through the symmetry $SU(2)_{L}\otimes U(1)_{Y}$, where the carriers are massless.

This symmetry is spontaneously broken through the non-vanishing vacuum expectation value of the Higgs field. Three of the four degrees of freedom of the Higgs field are becoming the longitudinal polarizations of the vector bosons, the fourth is the Higgs boson → excitation of the vacuum needs energy. The fermions couple to the Higgs boson proportionally to their mass through Yukawa couplings.

The Higgs boson has been the holy grail of particle physics for quite the last three decades!

т-leptons and b-jets

The **T**-lepton is special!

Mass of 1.78 GeV and ct = 87.1 μ m,

the only lepton that decays in our

detector, in various ways...

n data	$\tau \rightarrow Ivv \sim 35\%$
--------	----------------------------------

 $\tau \rightarrow hadrons \sim 65\%$

f

K. Nikolopoulos

Higgs Boson Physics

January, 2014 🚪

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ resolution

 $m_{\gamma\gamma}^2=2E_1E_2(1-\cos\alpha)$

UNIVERSITYOF

BIRMINGHAM105

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ resolution

- LHC beam spot $\sigma_z \sim 5-6$ cm and O(20) vertices \rightarrow identify "primary" vertex challenging Use the strengths of the detector!
- Build likelihood to identify the primary vertex using
 - longitudinal/lateral segmentation of EM calorimeter (photon pointing) $\rightarrow \sigma_z \sim 1.5~cm$
 - use beam-spot constraint/converted photon tracks
 - reconstructed vertex $\Sigma(pT)^2$
- pile-up robust
- \bullet contribution of angular term to $m_{\gamma\gamma}$ resolution negligible

 $m^2_{\gamma\gamma}=2E_1E_2(1-\cos\alpha)$

Statistics Treatment

Statistics Treatment:

- profile likelihood ratio [Eur.Phys.J.C71:1554,2011]
 - \rightarrow nuisance parameters for systematic uncertainties
- \bullet exclusion limits using CL $_{\rm S}$ [J. Phys. G 28 (2002) 2693-2704]

$H \rightarrow \gamma \gamma$: Event Categories

8 TeV (90% signal window)

K. Nikolopoulos

Higgs Boson Physics
H→γγ: BDT Response

BDT: m_{jj}, η_{j1}, η_{j2}, Δ η_{jj}, p_{Tt}, Δ φ_{YY;jj}, η*=η_{YY} –(η_{j1}+η_{j2})/2 Δ Rmin_{Yj}

January, 2014

Text

UNIVERSITY^{of} BIRMINGHAM</sub>110

K. Nikolopoulos

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Mass resolution

H→ZZ^(*)→4I Background Estimates: Control Regions

K. Nikolopoulos

Higgs Boson Physics

H→WW^(*)→IvIv: Event Selection

Table 2: Selection listing for 8 TeV data. The criteria specific to $e\mu + \mu e$ and $ee + \mu\mu$ are noted as such; otherwise, they apply to both. Pre-selection applies to all N_{jet} modes. The rapidity gap is the *y* range spanned by the two leading jets. The $m_{\ell\ell}$ split is at 30 GeV. The modifications for the 7 TeV analysis are given in Section 6 and are not listed here. Energies, masses, and momenta are in units of GeV.

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Pre-selection	Two is Lepton $e\mu + \mu$ $ee + \mu\mu$	solated leptons $(\ell = e, \mu)$ with ns with $p_{\rm T}^{\rm lead} > 25$ and $p_{\rm T}^{\rm suble}$ $e: m_{\ell\ell} > 10$ $\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 1$	th opposite charge ^{ad} > 15 5
Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$	$e\mu + \mu e: E_{\rm T}^{\rm miss} > 20$ $ee + \mu\mu: E_{\rm T}^{\rm miss} > 45$ $ee + \mu\mu: E_{\rm T,STVF}^{\rm miss} > 35$
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30$	$N_{b-jet} = 0$ - $e\mu + \mu e: Z/\gamma^* \rightarrow \tau \tau$ veto	$N_{b-\text{jet}} = 0$ $p_{\text{T}}^{\text{tot}} < 45$ $e\mu + \mu e: Z/\gamma^* \rightarrow \tau\tau$ veto
VBF topology			$m_{jj} > 500$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20$) in rapidity gap Require both ℓ in rapidity gap
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ topology	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e$: split $m_{\ell\ell}$ Fit $m_{\rm T}$	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit m_{T}	$m_{\ell\ell} < 60$ $ \Delta \phi_{\ell\ell} < 1.8$ - Fit $m_{\rm T}$

H→bb: Event Selection

Object	0-lepton	1-lepton	2-lepton
Leptons	0 loose leptons	1 tight lepton	1 medium lepton
		+ 0 loose leptons	+ 1 loose lepton
Jets	2 <i>b</i> -tags	2 <i>b</i> -tags	2 <i>b</i> -tags
	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 {\rm ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$
	$p_{\rm T}^2 > 20 { m ~GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$
	$+ \le 1$ extra jets	+ 0 extra jets	-
Missing E_T	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60 { m ~GeV}$
	$p_{\rm T}^{\rm miss} > 30 { m GeV}$		
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$		
	$\operatorname{Min}[\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})] > 1.5$		
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$		
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	$83 < \overline{m_{\ell\ell}} < 99 \text{ GeV}$

0-lepton channel $E_{\rm T}^{\rm miss}$ (GeV) 120-160 160-200 >200 0.7-1.9 $\Delta R(b, \bar{b})$ 0.7-1.7 <1.5 1-lepton channel 0-50 50-100 100-150 150-200 >200 $p_{\rm T}^W ({\rm GeV})$ $\Delta R(b, \bar{b})$ >0.7 0.7-1.6 <1.4 $E_{\rm T}^{\rm miss}$ (GeV) > 25 > 50 $\overline{m_{\mathrm{T}}^W(\mathrm{GeV})}$ > 40 -2-lepton channel 0-50 50-100 100-150 150-200 >200 $p_{\rm T}^Z({\rm GeV})$ $\Delta R(b, \overline{b})$ >0.7 0.7-1.8 <1.6

H→тт: Event Display VBF-like candidate

A small deviation: The World Wide Web

The World Wide Web, invented in 1989 and implemented in 1990, by Tim Berners-Lee, was an effort to facilitate the communication of physicists. Today, as we all know, it's way beyond that! The first web-page to come on-line: http://info.cern.ch/

A screen shot on the NeXT screen, the computer of Tim Berners-Lee with HyperText application used to browse the WWW in 1990.

WorldWideWeb		File View		
Info 🗠	Welco	me to the Universe of HyperText		
Navigate D	Home			
Document P	Access to this infr	rmation is provided as part of the WorldWideWeb	Paris	PREE
Edit P	project. The WWW	/ project does not take responsability for the accuracy		
Find P	of information pro-	vided by others.	_ K	الهدير
Links P	How to proceed			
Style P	now to proceed			7.
Print p	References to oth	er information are represented like this . Double-click		
Page layout	on it to jump to rela	ated information.	and Summer	AL AND
Somicon It	General CERN Information	sources	G Summer	A Charles
Hide b			· A	
Quit q	Now choose an a system currently h indexes, you show	rea in which you would like to start browsing. The has access to three sources of information. With the ald use the keyword search option on your browser.	Divar	ie Z
	CENIX Information	A general response of the two information made available by the computer centre, including CERN, Cray and IBM help files, "Writeups", and the Computer Newsletter (CNL). (This is the same data on CERNVM which is also available on CERNVM with the VM <u>FIND</u> <u>command</u>).		U V
Info	Yellow Pages	A keyword index to the CERN telephone book by function.	Genis SPS Tillimer	~ _
HyperMedia Bro	wser/Editor Version 1.0 Alpha.only	Vou can access the internet news scheme (Seeinformation for new users). News articles are distributed typically CERN-wide or worldwide, and have a finite lifetime.	CERN Meyrin	SWITZERLAND
information availability	1) (GENEVAL	Appemasse
mormatorravalasity	by Tim Berners-Lee	hay be of general interest at CERN include	Value - V	Antemasse
1990.91 CERN. Distribution restricted: a	sk for terms. TEST VERSION ONLY	WS) and the second s	X
ext: Text which is not constrain edia: Information which is not co	ed to be linear. onstrained linear or to be text.	re Technology Interest Group) news,	st Julien	Enne
	201		Von 0 5	Annecy
his is the first version of the NextStep ' ith the libWWW library. Bug reports to	worldwideWeb application	machine, see also the following topics:	km	(LAPP)
heck the list of known bugs in the web too.		on this WorldWideWeb application		M
ais was the original prototype for the U	Vorld-Wide Web Manu			
owers for other platforms now exist. F	Read the web for details.		~	
ou should configure the newsreader of here your local news (NNTP) srever i	code in this application to klnow s. Type in a terminal window			E.
ysics		January, 2014	1 SIRMI	CRSITY ^{of} NGHAM

Higgs Boson Physics

A Toroidal LHC ApparatuS

 \Rightarrow General purpose detector designed for the harsh LHC environment

	ATLAS
Magnets	2T solenoid, 3 air-core toroids
Tracking	silicon + transition radiation tracker
EM Calorimetry	sampling LAr technology
Hadron Calorimetry	plastic scintillator (barrel) LAr technology (endcap)
Muon	independent system with trigger capabilities

K. Nikolopoulos

Higgs Boson Physics

Η→γγ

Results per final state

K. Nikolopoulos

Higgs Boson Physics

Higgs Boson Width

The limits presented in this search assume cross sections based on on-shell Higgs boson production and decay and use Monte Carlo generators with an ad-hoc Breit-Wigner Higgs line shape. Recently potentially important effects related to off-shell Higgs boson production and interference effects between the Higgs boson signal and backgrounds have been discussed [arXiv:1107.0683]. The inclusion of such effect may affect limits at very high Higgs masses (m_H > 400 GeV).

Effective Lagrangian

J. R. Espinosa et al. Higgs Hunting 2012 (arXiv:1207.1717[hep-ph])

of valid at
$$E \sim M_{\pm}$$
.
Field content: $SM + 3calar h$ (no extra light states)
 $\mathcal{L} = \mathcal{L}[h] - (M_{\nu}^{2}W_{\mu}^{+}W_{\tau}^{-} + \frac{1}{2}M_{2}^{2}Z_{\mu}Z_{\tau}^{+})[1 + 2a\frac{h}{\nu} + O(h^{2})]$
 $- m\phi_{i}\overline{\psi}_{i}\psi_{i}[1 + c\frac{h}{\nu} + O(h^{2})] + ...$ Contino et al
 $no' nz$
 $Ir \mathcal{L} = \mathcal{L}[h] - (M_{\nu}^{2}W_{\mu}^{+}W_{\tau}^{-} + \frac{1}{2}M_{2}^{2}Z_{\mu}Z_{\tau}^{+})[1 + 2a\frac{h}{\nu} + O(h^{2})]$
 $- m\phi_{i}\overline{\psi}_{i}\psi_{i}[1 + c\frac{h}{\nu} + O(h^{2})] + ...$ Ky Contino et al
 $no' nz$

K. Nikolopoulos

UNIVERSITY^{of} BIRMINGHAM</sup>121