Higgs Boson Physics MPAGS Module

Problems

Problem 1

The Lagrangian for three interacting real fields ϕ_1, ϕ_2, ϕ_3 is:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi_i \right)^2 - \frac{1}{2} \mu^2 \phi_i^2 - \frac{1}{4} \lambda \left(\phi_i^2 \right)^2$$

with $\mu^2 < 0$ and $\lambda > 0$, and where a summation of ϕ_i^2 over *i* is implied. Show that it describes a massive field of mass $\sqrt{-2\mu^2}$ and two massless Goldstone bosons.

Problem 2

Given the following Lagrangian density for interacting real scalar fields (σ, π) :

$$\mathcal{L} = -\frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \right) + \frac{1}{2} m^2 \left(\sigma^2 + \pi^2 \right) - \frac{1}{4} \lambda \left(\sigma^2 + \pi^2 \right)^2 - g \sigma$$

with $(\lambda > 0, g > 0)$

a) Estimate the Hamiltonian density \mathcal{H} and locate the ground state of the system

b) Study the Goldstone effect at the limit $g \to 0$

Problem 3

Assume a scalar boson ϕ observed in the decay channel $\phi \to \gamma \gamma$. ϕ is produced through the gluon fusion and the vector boson fusion processes, which have distinct experimental signatures. The aim is to measure the signal strength modifiers μ_{ggF} and μ_{VBF} for each process, where $\mu = \frac{\sigma \cdot BR}{\sigma_{SM} \cdot BR_{SM}}$. To this end an analysis with two signal regions, SR₁ and SR₂, is prepared. Each signal region is optimized to select one of the two production modes. Given, for each signal region *i*, N_i^{obs} observed events, n_i^{ggF} and n_i^{VBF} expected signal events from the Standard Model from each production mechanism, and n_i^b expected background, and assuming the experimental outcome given in Table 1:

- a) Provide the likelihood function of the experiment.
- b) Measure simultaneously parameters (μ_{ggF}, μ_{VBF}) .
- c) Measure parameters μ_{ggF} and μ_{VBF} .
- d) Estimate the expected uncertainty for these measurements, at the experiment design level, i.e. before looking at the data, assuming the Standard Model.

Table 1: Expected and observed events for the experimental configuration.

	SR_1	SR_2
N^{obs}	24	8
n^{ggF}	16.2	2.1
n^{VBF}	0.9	4.2
n^b	5.2	0.9

Problem 4

Assume the Orsay electron beam dump experiment described in Phys. Lett. B229 (1989) 150.

- a) Estimate the experimental acceptance for Higgs boson decays, as a function of its life-time (τ) .
- b) Express the acceptance as a function of the Higgs boson mass (m_H) for the Standard Model.
- c) Estimate the expected number of events for a Standard Model Higgs boson, as a function of m_H .
- d) Estimate the expected energy distribution in the Cerenkov calorimeter for various m_H values, with and without accounting for the energy resolution of the detector.
- e) Estimate the expected number of events for the Standard Model Higgs boson as a function of m_H , including an energy requirement of 750 MeV in the calorimeter.

Problem 5

Assume the global electroweak fit as described in Eur. Phys. J. C60 (2009) 543.

- a) Using only the M_W mass measurement as input and assuming perfect knowledge of all input parameters except M_H , write the likelihood function and perform the maximum likelihood scan versus M_H , assuming 1%, 0.1% and 0.01% precision on the M_W measurement. [Use Equation (4.10)]
- b) Repeat a) assuming 10%, 1% and 0.1% precision on m_t
- c) Repeat a) and b) but this time for $\sin^2 \theta_{\text{eff}}^{\ell}$ assuming a relative precision 10^{-3} , 10^{-4} and 10^{-5} . [Use Equation (4.11)]
- d) Repeat c) assuming 10%, 1% and 0.1% precision on m_t .
- e) Repeat the above combining the M_W and $\sin^2 \theta_{\text{eff}}^{\ell}$ measurements.
- f) What are your remarks?