Particle Physics Research - Birmingham group

HEFCE academic staff 7
Research staff 13,
Engineers 2,
Technicians 2
PhD students 12

Steve O'Neale (1948-2003)

Quarks, leptons & bosons

Gauge boson couplings

Key questions

- Origin of mass
- Properties of strong interaction
- Origin of matter-antimatter asymmetry
- Unification of forces
- Neutrino masses
- Three generations
-

Particle Physics Projects

- Current experiments
 - Hera (H1)
 - Tevatron
 - CP violation (BaBar)
 - Neutrino observatories
- In-build experiments
 - Large Hadron Collider (ATLAS, ALICE)
 - Long baseline neutrino beams
- Future facilities
 - Linear collider (CALICE)
 - Neutrino factory/ Muon collider

Collaboration and Timescale of Experiments

- All our experiments are international collaborations at particle colliders at CERN, DESY and SLAC
- Most involve detector construction and operational responsibilities
- Most take data and perform physics analyses for up to 10 years (total time 15-20 years)
- We focus on physics analysis in all of our experiments

Links to other fields

- Challenging detector and electronics requirements – spin off technologies
- Data rates, data storage and processing require world-wide Grid computing model
- Midlands e-science centre of excellence MeSc
- Tier2 centre with Bristol, Cambridge, Oxford and RAL all consistent with our main aim precision measurements and search for new phenomena in high energy collisions

The experiments

- BaBar (Chris Hawkes)CP violation
- H1 (Paul Newman) strong interaction
- ALICE (David Evans) quark confinement
- ATLAS (Dave Charlton) origin of mass
- Linear Collider (Nigel Watson) unification
- Conclusions (Pete Watkins)