
Techniques of Physics

Worksheet 3 | Solutions to Schr�odinger's
Equation

Introduction

In the last worksheet we looked at classical vibrations and waves. This time we
will be concentrating on waves in Quantum Physics. In particular we will be look-
ing at the Wave Mechanical formulation of quantum theory, which is governed by
Schr�odinger's Equation. First we will need some theory and then an improved
numerical approximation for di�erential equations.

Schr�odinger's Wave Equation

In Wave Mechanics, the state of a quantum system is described by its wave-function,
e.g.  (x) in one dimension. The interpretation of this wave-function is that the
probability density of a particle to be at a position x is given by j (x)j2. The shape
of the wave-function is governed by the di�erential equation known as Schr�odinger's
Equation. For standing states in one dimension it looks like:

d2 (x)

dx2
=

2m

�h2
[V (x)� E]  (x) (1)

where E is the energy of the system, m is the mass of the particle and V (x) is the
form of the potential that the particle is subjected to.

For the purposes of this week's examples, we will not be worrying about the
absolute energies or sizes of the solutions, just the functional forms. For this pur-
pose, it is adequate to set constants to appropriate values in order to simplify the
equation. So we can re-write equation 1 as:

d2 (x)

dx2
= F (x) (x) (2)

F (x) = V (x)� E (3)

During these exercises, we will be changing the shape of the potential V (x), so you
should de�ne F (x) as a function appropriate to the exercise.
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A better numerical solution for di�erential equations

Last week we introduced you to the simplest method of approximation for di�eren-
tial equations. In terms of equation 2, this method would be:

 (x+ �x) =  (x) + �x
d (x)

dx
(4)

d (x+ �x)

dx
=
d (x)

dx
+ �x

d2 (x)

dx2
=
d (x)

dx
+ �xF (x) (x) (5)

However, this week, we will use the next order of approximation. This will
facilitate �nding stable solutions, and will reduce the problems seen in last week's
exercise when successive approximations went out of control.

Instead of equations 4 and 5 above, we use:

 (x+ �x) =  (x) + �x
d (x+ �x=2)

dx
(6)

=  (x) + �x
d (x)

dx
+

1

2
(�x)2F (x) (x) (7)

and similarly:

d (x+ �x)

dx
=

d (x)

dx
+ �x

d2 (x+ �x=2)

dx2
(8)

=
d (x)

dx
+ �xF (x+ �x=2)

"
 (x) +

1

2
�x
d (x)

dx

#
(9)

There is just one di�erence | instead of evaluating the slopes at x, we evaluate
them at x+�x=2, which is better, being halfway between x and �x. This is illustrated
in Figure 1, and comparison with last weeks diagram should convince you that this
is a better method.

Although this may look complex, to implement this in Mathcad is straight for-
ward. It is essentially the same technique as last week, only with a few more terms.
Note that it is called the second order approximation since we now have all the
(�x)2 terms as well as the �x terms.
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Figure 1: Second order approximation to solve a di�erential equation.

Week 4, Session 1

1 The Step Potential

1.1 Individual Standing Waves by Numerical Solution

As a �rst exercise, we shall try to calculate a solution to the problem of a particle
wave hitting a potential barrier which is larger than the energy of the particle. Start
with a potential that looks like:

V (x) = 10 for x > 0

= 0 for x � 0 (10)

Using the numerical approximations of equations 8 and 9, write a Mathcad
worksheet to plot the values of  (x) for the range �10 � x � 1. You will have to
decide on suitable step sizes in order to get a good approximation without wasting
too much time in calculation. To start with, use an energy of E = 1, and the initial
values:

 (�10) = 5;
d (�10)

dx
= 0

You should see that the wave-function has the familiar sinusoidal shape until it
reaches the potential barrier. When the wave-function hits the potential barrier,
it diverges badly, and this solution is therefore non-physical. This is illustrated in
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Figure 2: Step Potential showing a diverging wave-function.

Figure 2. What we have to look for is a solution where the wave-function decays to
zero as it goes into the barrier.

In order to make a better behaved wave-function, the phase of the wave at the
point when it hits the potential must be just right so that it dies away properly. A
simple way of adjusting this phase is to adjust the initial phase at x = �10 by giving
d =dx a non-zero value. Adjust this value appropriately until you get to a region
where the wave-function decays neatly onto the x-axis. Now try extending the range
of the calculation out to x = 3. You will probably �nd the wave-function starts
to diverge again. More careful tuning of the inputs should stop the wave-function
from blowing up at high x, but even after tuning, the approximation technique will
eventually break down when you take the plot to even higher x. However by the
time you have tuned the wave to die down to x = 3, you should have a good idea
what the ideal wave-function looks like. Note down the shape of the wave-function

and how far it penetrates into the potential barrier.

Now you have a good solution to the Schr�odinger Equation, try doubling the ini-
tial values (both  and d =dx). Describe what you see, and explain the signi�cance

of the amplitude of the wave-function.

Try repeating the exercise with a di�erent energy (remembering to keep E < 10
for the moment). Good values to try out are 5, 9.5 | do not waste time by trying to
tune the parameters to several decimal places, after all, this is only an approximation
method. With the higher energies, you should calculate the wave-function out to
higher values of x | with E = 9:5 you should plot the wave-function all the way
out to x = 10. Note down the di�erences observed in the shape of the wave-function

before and after the barrier as the energy increases.
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You should have done enough by now to convince yourself that for all energies
up to E = 10 (i.e. the height of the barrier), with a carefully selected phase of the
wave, a stable wave-function is always possible. Finally try making E > 10 and
comment on the result.

1.2 Particle Colliding with a Barrier (Optional)

In wave mechanics, particles are described by the superposition of many wave-
functions to form `wave packets'. In week 2 you saw how such a wave packet can
be formed by summing a number of cosines with slightly di�erent frequencies. To
describe a particle hitting a barrier we have to sum over many of the individual
solutions of the Schr�odinger equation for the step potential.

You have already seen what the individual solutions look like, so this time you
will use the analytical solutions. You may like to check that these look similar to
your earlier results. Eigenfunctions of the time-independent Schr�odinger equation
for a step potential at x = 0 are of the form:

 (x; k) =
1p
V0

�
k cos kx� (

q
V0 � k2) sin kx

�
for x � 0

=
1p
V0
ke�(

p
V0�k2)x for x > 0 (11)

where V0 is the size of the potential step and k is the wave number of the func-
tion for negative x. Time dependency is included by multiplying by exp(�iEt) =
exp(�ik2t) to give the full wave-function

	(x; t) =  (x)e�ik
2t: (12)

Create a wave packet by summing eigenfunctions with amplitude

G(k) = e�9(k�2)
2

eik
26 (13)

with k = 1; 1:05 : : : 3. (The complex factor in G(k) is needed to place the wave
packet a short distance away for the barrier at t = 0.) Use a potential step of V0 = 10
and plot the probability density 	�(x; t)	(x; t) over the range �60 < x < 10.
Animate the plot over the time range 0 < t < 16 and describe the phenomena you
observe.
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Week 4, Session 2

2 Potential Wells

2.1 The Finite Square Well

Another interesting set of solutions to the Schr�odinger Equation are the bound
states of a particle con�ned in a potential well. In this case, only discrete energies
lead to stable solutions of the Schr�odinger Equation, leading to a spectrum of bound
states. This exercise will illustrate how this comes about.

Analytical solutions for particles trapped in an in�nite well are easily obtained,
since the wave-functions are just sine-waves �tting into the well in a similar way to
vibrations on a string. However, if the well is �nite (i.e. the energy, E, is of similar
magnitude, to the potential di�erence, V , between the bottom and top of the well),
then the solutions are more di�cult to calculate and even more so for unusually
shaped potentials. This is where a numerical solution becomes useful.

A suitable potential well for this problem is de�ned below:

V (x) = 16 for jxj > 1

= 0 for jxj � 1 (14)

To start with we will be looking for the lowest energy state, and you can assume
that this state,  (x), will be an even function, since we have used a potential that
is symmetric about x = 0. The potential and a possible lowest energy state are
illustrated in Figure 3. Therefore you need only look at the solution for x � 0, and
assume the other half will be the mirror image. This is shown by the `Region of
Simulation' in Figure 3. Also this gives us the clue that we should start by looking
for a solution with d =dx = 0 at x = 0. The magnitude of the wave-function is
arbitrary, so you can start with any positive value of  at x = 0.

Write a worksheet to display the shape of  (x) over the range 0 � x � 2. Start
with an Energy, E, of 1. As in the case of the step potential, you are looking
for a wave-function that tends to zero as it penetrates into the potential barrier.
Again, the solution needs to be �nely tuned, and even so will eventually inate to
in�nity because of the inaccuracy of the approximation. The only parameter you
have free to tune in this example is the energy. As you reach a good solution, you
should extend your calculation range out to x = 4, and re-tune the energy as before.
By doing this you should �nd a well behaved wave-function corresponding to the
lowest energy solution, and be able to measure its energy. Note down this energy.

As before, do not bother with many decimal places - this is only an approximate
method anyway.
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Figure 3: Square Potential Well showing shape of lowest energy solution and region
of simulation.

We would like to show that a solution only exists for certain energies. That is,
a particle trapped in a potential well has characteristic quantum levels. In order to
justify this statement, try �nding a solution for E = 1:7. By comparison with the
�rst exercise, we could adjust the phase of the initial values by setting d =dx as
a non-zero value. Try doing this in order to �nd a solution that dies away in the
usual way as x gets larger. When you have done this, explain why this actually isn't

a stable solution to the problem.

For the potential well given, there are actually 2 more stable bound energy levels.
Look for these other solutions, concentrating on energies around 6 and 13, and note

down the �nal energies. However, before trying this, think about what shape you
expect these second and third energy levels to have, because it might have some
implications for your initial conditions.

Finally try an energy E > 16. Describe what you see, and comment on it.

2.2 The Quantum Harmonic Oscillator

It is instructive to look at the quantum version of the harmonic oscillator. This
can be done easily by changing the potential used in the last section. This time we
require a quadratic potential | the simple equation given below is suitable:

V (x) = x2 (15)

You can now try the same sort of experimentation with the energy as above until
you �nd some bound states. You should extend the range of the calculation out to
whatever value seems necessary to show that you have found a stable solution. You
should look for both odd and even functions. Try looking at the �rst few energy
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levels, and show that the energy of successive levels is given by:

E = (2n + 1) where n = 0; 1; 2::::

Having observed these numbers, compare them to your knowledge of the Quantum

Harmonic Oscillator from theory.

As stated at the start, since we are ignoring certain constants, we can say little
about the absolute magnitude of the energy levels. To do this would only be a
matter a putting in real values for �h, m. Nevertheless, we have still managed
to demonstrate the basic structure of the energy levels of a quantum harmonic
oscillator.

3 The Hydrogen Atom (Optional)

The �nal example extends the Schr�odinger Equation to three dimensions in showing
the solutions for a single electron in orbit of a Hydrogen nucleus. You may have
seen some of the analytical solution for this situation, but it is far too complex to
cover in this class. Here we will give you the form of the wave-functions, and you
will be able to explore exactly what they look like using Mathcad's graph plotting
functions.

The stationary states of the hydrogen atom can be found by solving the time
independent Schr�odinger equation using the method of separation of variables. The
spatial dependence of the electron wave-function in spherical polar coordinates can
be written

 nlml
(r; �; �) = Rnl(r)Ylml

(�; �) (16)

where n is known as the principal quantum number, l is the angular momentum
quantum number and ml is the magnetic quantum number. Each wave-function
with a unique set of (n; l;ml) values can accommodate two electrons, one with spin
up and one with spin down. We will consider the radial wave-functions Rnl(r) and
angular wave-functions Ylml

(�; �) separately, but remember that it is their product
that gives the electron wave-function  nlml

.
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n l Rnl(r)

1 0
�
Z

a0

�3=2
:2 exp

�
�Zr
a0

�

2 0
�
Z

2a0

�3=2

:2
�
1� 1

2

Zr

a0

�
exp

�
�1

2

Zr

a0

�

2 1
�
Z

2a0

�3=2

:
1p
3

Zr

a0
exp

�
�1

2

Zr

a0

�

3 0
�
Z

3a0

�3=2

:2

 
1 � 2

3

Zr

a0
+

2

27

�
Zr

a0

�2
!
exp

�
�1

3

Zr

a0

�

3 1
�
Z

3a0

�3=2

:
8
p
2

9

Zr

a0

�
1� 1

6

Zr

a0

�
exp

�
�1

3

Zr

a0

�

3 2
�
Z

3a0

�3=2

:
2
p
2

27
p
5

�
Zr

a0

�2

exp
�
�1

3

Zr

a0

�

Table 1: Radial Wave-functions, Rnl(r). These functions are normalised so that the
integrated probability density is 1. That is:

R
r2R2

nldr = 1.

Radial Wave-Functions

The �rst few Rnl are listed in Table 1, where for the hydrogen atom the atomic
number Z = 1. In additional to Rnl = 0 at r = 0 and r =1, there are n�l�1 other
zeros of these wave-functions. To a �rst approximation, in zero applied magnetic
�eld, the electron energy depends only on n. (The fact that it does not depend on l
is a consequence of the spatial dependence of the Coulomb potential.) The energy
levels are

En = �1

2

 
e2

4��0a0

!
1

n2
(17)

where a0 = 4��0�h=me2; this is the Bohr radius and equals 0.053 nm.
For a particular value of n, the allowed values of l are in the range 0; 1 : : : (n�1).

For each value of l there are (2l+ 1) values of ml in the range �l;�l+1 : : : l� 1; l.
(The physical interpretations of l and ml are discussed below.) For �xed n, states
with di�erent l and ml have the same energy since En depends on n only (i.e. they
are degenerate.) The number of degenerate states is given by 2

Pn�1
l=0 (2l+1) = 2n2,

where the prefactor of 2 is included to account for the e�ects of electron spin.
In spectroscopic notation, the n-states with l = 0; 1; 2; 3 are called ns; np; nd; nf
respectively.
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The ground state of the hydrogen atom has n = 1, l = 0 and ml = 0, and is
non-degenerate, but it can be occupied by two electrons of opposite spins; this is
the 1s state. The states of the next highest energy have n = 2, l = 0 and 1, and
therefore an overall degeneracy of 4 (there are 8 separate states with n = 2 if we
include the e�ects of electron spin); these are the 2s (one of them, with l = 0 and
ml = 0) and 2p states (three of them, with l = 1 and ml = �1; 0;+1). For n = 3,
we have the states 3s (one, l = 0), 3p (three, l = 1) and 3d (�ve, l = 2), so the n = 3
\shell" can accommodate a total of 18 electrons. We can continue this process for
larger values of n.

Angular Wave-Functions

The �rst few of these are listed in Table 2, and are often called spherical harmonics
Ylml

. As described above, for �xed n all of these wave-functions have the same en-
ergy. However, each wave-function with a separate value of l has a di�erent electron

angular momentum equal to
q
l(l+ 1)�h, with a component of this about any speci-

�ed direction of ml�h; this is the physical interpretation of l and ml. Each spherical
harmonic with angular momentumquantum number l has (2l+1) degenerate states,
each with their own value of ml (with �l � ml � l).

For ns states, l = 0 and ml = 0, and the angular part of wave-function is Y0;0.
For np states the situation is more complex since there are three of them, each with
their own directionality in space. It is conventional to take the npz state as Y1;0.
However, the wave-functions Y1;1 and Y1;�1 do not have the same shape as Y1;0. For
convenience, the states npx and npy are formed from linear combinations of Y1;1
and Y1;�1 that result in similar shapes to npz, except that they are directional along
the x and y axes respectively. A list of the linear combinations for these and the
nd states can be found in Table 3. Whether we create these linear combinations of
Ylml

or just work with the isolated spherical harmonics depends on the context; the
linear combinations are more convenient for discussing the bonding in molecules,
while the individual Ylml

are more appropriate for isolated atoms.

Exercises

The radial and angular wave-functions of Tables 1{3 have been provided for you.
This will save much tedious typing and bug-�xing. They are located on the hard
disk as the �le `C:nWinmcadnCourse4nHydrogen.mcad'. It is assumed Z = 1 for
the Hydrogen Atom. All you are required to do is plot them and study their shape.
Print out some of the graphs you generate, but there is no need to print out the
functions! In the case of the angular wave-functions, it will be necessary to use a
new surface plotting technique, known as Parametric Surface Plots. It is described
on page 498 of the Mathcad Manual.
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l ml Ylml
(�; �)

0 0
1p
4�

1 1 �
s

3

8�
sin � exp(i�)

1 0

s
3

4�
cos �

1 �1
s

3

8�
sin � exp(�i�)

2 2

s
15

32�
sin2 � exp(2i�)

2 1 �
s
15

8�
sin � cos � exp(i�)

2 0

s
15

16�
(3 cos2 � � 1)

2 �1
s
15

8�
sin � cos � exp(�i�)

2 �2
s

15

32�
sin2 � exp(�2i�)

Table 2: Angular Wave-functions (Spherical Harmonics), Yl;ml
(�; �). These func-

tions are normalised so that the integrated probability density is 1. That is:R R jYlml
j2d�d� = 1.
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s = Y0;0

px =
�ip
2
(Y1;1 + Y 1;�1)

py =
�1p
2
(Y1;1 � Y 1;�1)

pz = Y1;0

dxy =
�ip
2
(Y2;2 � Y2;�2)

dxz =
�ip
2
(Y2;1 + Y2;�1)

dyz =
�1p
2
(Y2;1 � Y2;�1)

dx2�y2 =
�1p
2
(Y2;2 + Y2;�2)

dz2 = Y2;0

Table 3: The `physical' s, p and d electron shells expressed in terms of the spherical
harmonics.

1. Plot the radial wave-functions Rnl(r) and radial probability density r2R2
nl(r)

as a function of r=a0 for the wave-functions listed in Table 1. Check that the
number of nodes of Rnl(r) is n� l � 1.

2. The probability of �nding an electron within a distance of the nucleus in the
Rnl state is given by

P (�) =
Z �

0
r2R2

nl(r)dr (18)

and when �=a0 becomes very large, P (�) is close to 1. Plot P (�) for a few of
the radial wave-functions.

3. Plot some of the angular probabilities s2; p2z; d
2
xy; : : :, for a few of the wave-

functions listed in Table 2. You will need to convert spherical polar coor-
dinates (r,�,�) into Cartesian coordinates (x, y, z). The formulae for this
are:

x = r sin(�) cos(�)

y = r sin(�) cos(�)

z = r cos(�) (19)
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