
Techniques of Physics

Worksheet 4 | Digital Signal Processing

1 Introduction to Digital Signal Processing

The new and fast growing �eld of digital signal processing (DSP) is concerned with
the processing of signals that have been converted into digital data. DSP techniques
have found application in many areas including image processing, instrumentation and
control, data compression, audio, telecommunications and biomedicine to name but a
few. Although primarily a subject area of electronic engineering, an understanding of
DSP can be extremely valuable to anyone involved in science and technology, including
physicists! Modern physics experiments invariably use a data acquisition (DAQ) system
to collect and record data in digital form. The methods of DSP are then used to extract
the required information from the data. This might be done in real-time as the data is
acquired or `o�-line' as the �rst step in the analysis of the data.

1.1 Discrete-time Systems

A signal processor can be pictured as a `black box' with an input that receives a signal
and an output that transmits a version of that signal after it has been transformed in
some way. A digital signal processor receives and processes discrete-time signals i.e.
signals that have been sampled at regular time intervals1. A sampled signal is basically
a sequence of numbers and we can write it in the form xn where n = 0; 1; 2; : : :. Systems
that process such discrete-time signals are known as discrete-time systems.

A discrete-time system is said to be linear if it obeys the principle of superposition.
That is, the response of the system to two or more inputs is equal to the sum of the
responses to each input acting separately in the absence of other inputs. For example,
if a discrete-time input signal an gives rise to the output signal cn and bn gives rise to
dn then the input signal an + bn produces cn + dn. A discrete-time system is said to be
time invariant if its output does not depend on the time that the input is applied. For
example, if the input signal xn gives the output yn then the time-shifted input signal
xn�k will give the output yn�k. When a discrete-time system is both linear and time
invariant its output yn for an input signal xn is given by the convolution sum

yn =
1X

k=0

hkxn�k (1)

1signals need not be time based but for the purposes of this document we are going to always talk

in terms of time based signals

1



where hk is the impulse response of the system. If the input signal is in the form of an
impulse i.e. xn = : : : ; 0; 0; 1; 0; 0; : : : the output of the system is hk (although shifted
in time.) Any input signal can be considered as a sequence of impulses with di�erent
amplitudes so, by the principle of superposition, the output is a sum of the responses to
the individual input impulses. Hence, the output is the convolution of the input signal
with impulse response described by Equation 1. It is important to appreciate that the
values of impulse response completely de�ne the system. Once you know the impulse
response you know everything about the system and can calculate the output for any
input signal.

An alternative and complementary way of looking at signals and the response of
systems is in the frequency domain. Signals can be described by the amplitude and
phase of their frequency components and systems can be described by their frequency
response. Converting between time domain and frequency domain descriptions involves
the Fourier transform. A time domain signal x(t) and its frequency domain equivalent
X(!) form a Fourier transform pair and are related by:

X(!) = F [x(t)]

x(t) = F�1 [X(!)]

where F represents the Fourier transform and F�1 represents the inverse Fourier trans-
form. In general, X(!) is complex and can be written in the amplitude-phase form
jX(!)j exp(i�X(!)) where �X(!) is the frequency dependent phase angle. Similarly, a
system's impulse response h(t) forms a Fourier transform pair with the system's fre-
quency response or transfer function, H(!):

H(!) = F(h(t))
h(t) = F�1(H(!)):

In the frequency domain, the output of a system, Y (!), is calculated by multiplying the
input, X(!), by the transfer function H(!) i.e.

Y (!) = H(!)X(!): (2)

Since H(!) is a complex function it can modify both the amplitude spectrum and the
phase spectrum of the input signal. Equation 2 is the frequency domain equivalent of
convoluting the input signal in the time domain with the impulse response, as can be
seen by taking the Fourier transform of y(t) = h(t)�x(t) where the � operator represents
convolution:

F [y(t)] = F [h(t) � x(t)]
F [y(t)] = F [h(t)]F [x(t)]

Y (!) = H(!)X(!):

2



In this working we have made use of the convolution theorem which states that con-
volution in the time domain is equivalent to multiplication in the frequency domain
�.e.

F [x1(t) � x2(t)] = X1(!)X2(!): (3)

Similarly, multiplication in the time domain is equivalent to convolution in the frequency
domain i.e.

F [x1(t)x2(t)] = X1(!) �X2(!): (4)

When thinking about signal processing problems it can be very helpful to keep these
two relationships in mind.

1.2 Sampling

Before being processed by a digital signal processor, continuous analogue signals must
be converted into a stream of numbers which represent the original signal by the pro-
cesses of sampling and digitisation. Sampling involves taking the value of the signal at
regular time intervals and digitisation involves converting the sampled signal values into
numbers. At both of these stages there is a loss of information and there are resulting
side e�ects. An understanding of the side e�ects is essential when considering DSP
systems.

The sampled signal can be considered as only being non-zero at the regular sampling
instants and zero at other times. In the time domain, this is equivalent to multiplying
the continuous analogue signal by an in�nite sequence of Dirac delta functions spaced
by the sampling period 1=fs, where fs is the sampling frequency; let us call this the
sampling function. It is interesting to see what this does in the frequency domain. As
has already been stated in Section 1.1, multiplying in the time domain is equivalent to
convolution in the frequency domain so we need to calculate the Fourier transform of
the input signal and the Fourier transform of the sampling function and then convolute
them. In general the input signal will consist of a range of frequencies but there will
be an upper limit to this range (perhaps because of the limited frequency response of
a transducer.) The sampling function is a set of Dirac delta functions as shown in
Figure 1. The Fourier transform of this sampling function is an in�nite sequence of
Dirac deltas spaced by the sampling frequency. Note that only a few of these are shown
in the �gure. The result of the convolution of these two Fourier transforms is illustrated
in Figure 1. Notice that the frequency spectrum of the input signal repeats at multiples
of the sampling frequency (only a few are shown on the �gure).

This pattern of signal appearing in upper and lower sidebands around repeated
harmonics of the sampling frequency, fs, can be understood as follows. In the time
domain, the sampled signal is formed from the multiplication of a continuous signal
d(t), by the sampling function, s(t), which is a train of delta functions at interval 1=fs.
The periodic sampling pulse train, s(t), can be expanded in a Fourier series as

3



Fourier Transform

f

f

f

fs0-fs

fs0-fs

t

t

t

Original (arbitrary) signal

Sampling function

Sampled signal

Multiplication Convolution

Time Domain Frequency Domain

ft

Sinusoidal signal component

fd

Figure 1: The e�ect of sampling a signal.

4



ffs0-fs

Figure 2: Aliasing in the frequency domain.

s(t) = a0 + a1 cos!st+ a2 cos 2!st+ � � �
If d(t) is a single sinusoidal component, cos!dt, then the sampled waveform is given

by

ds(t) = a0 cos!dt +
a1
2
cos(!s � !d)t+

a1
2
cos(!s + !d)t+

a2
2
cos(2!s � !d)t+

a2
2
cos(2!s + !d)t+ � � �

where the n!s � !d terms follow from cos(A�B) = cosA cosB � sinA sinB.
The same expansion around harmonics of fs applies to every frequency component

of d(t), hence the repeated symmetric spectrum illustrated in Figure 1, which extends
in both directions from each integer multiple of the sampling spectrum.

Problems occur if the input signal contains frequencies greater than fs=2, the so called
Nyquist frequency. In this case the repeated spectra start to overlap as illustrated in
Figure 2 and it becomes impossible to distinguish between input frequencies greater than
fs=2 and those less than fs=2 in the overlap. This e�ect is called aliasing. The conclusion
of this analysis is that frequencies greater than fs=2 cannot be recovered once the signal
has been sampled at fs and so the input signal should not contain such frequencies. In
practise this is achieved by applying a low pass �lter at the input of sampling circuit to
remove all frequency components above fs=2. If the signal contains useful information
at high frequency then it is necessary to increase the sampling frequency.

The side-e�ect of digitisation is the addition of quantisation noise to the signal. The
size of the noise is determined by the precision of the numbers used to represent the
signal. This precision should be made good enough that the added noise is insigni�cant
compared with other sources of noise in the signal.

5



1.3 The Fast Fourier Transform

The fast Fourier transform (FFT) is very useful tool for estimating the frequency content
of signals. The algorithm is highly eÆcient and using modern microprocessors it is
possible to do real-time frequency analysis of signals in the audio frequency range. The
FFT is a special form of the more general discrete Fourier transform (DFT). In turn, the
DFT is a discrete-time form of the Fourier transform. That is, the input time domain
data is in the form of a sequence of discrete values and the output is a set of discrete
frequency amplitude-phase values. The DFT and Fourier transform are therefore related
but are not exactly equivalent.

The DFT of a sequence of N discrete-time values xn, where n = 0; 1; : : :N � 1, is
given by:

Xk =
1p
N

N�1X

n=0

xne
i2�kn=N (5)

where k = 0; 1; : : :N�1. Hence, the DFT returns N complex values which represent the
amplitude and phase for the harmonic frequencies f = kfs=N where fs is the sampling
frequency. The inverse DFT is given by:

xn =
1p
N

N�1X

k=0

Xke
�i2�kn=N : (6)

The FFT is mathematically identical to the DFT but the number of data points is
restricted to 2i where i is an integer. FFTs are much faster because the algorithm takes
advantage of computational redundancies in the DFT.

The discrete nature of the DFT results in side e�ects which need to be appreciated
when using the DFT (or FFT) to analyse signals. The �rst problem is aliasing and has
already been discussed in Section 1.2. If the input signal contains any frequencies greater
than fs=2 they will appear as frequency components less than fs=2. This problem can
be solved by increasing the sampling frequency until the frequencies of interest are below
the Nyquist frequency.

The second problem occurs because a signal component with frequency not exactly
equal to one of the harmonic frequencies f = kfs=N cannot be properly represented.
The result is that its amplitude is shared between nearby harmonics. This e�ect can be
reduced by increasing the number of data points either by analysing more points or, if
that is not possible, by adding zero values to the end of the data. This improves the
spectral resolution of the DFT by reducing the spacing of harmonic frequencies, �f ,
since for an N -point DFT �f = fs=N .

The third problem is spectral leakage and is the result of analysing only the �nite time
interval N=fs. E�ectively, what we have done is multiply a signal of in�nite duration
by a window function to give a signal of �nite duration. In the frequency domain this is
equivalent to convoluting the frequency spectrum of the signal with the Fourier transform

6



f

f

fsine-fsine

fsine-fsine

No window

Rectangular window

Figure 3: The e�ect of a rectangular window on a sine wave in the frequency domain.

of the window function. In the simplest case this window function is rectangular and
the input signal's spectrum gets convoluted with the sinc function as shown in Figure 3.
This function has a �nite width and has very long tails so that each frequency component
in the signal `leaks' across several frequency bands. This problem can be improved by
using window functions other than a rectangle and by increasing the width of the time
window.

1.4 Digital Filters

Digital �lters are discrete-time systems that modify the amplitude and/or phase of
signals in a frequency dependent way. The reason for using a �lter is usually to extract
only the frequencies of interest from a signal. Real signals are always contaminated by
noise to some extent and �lters are needed to remove the noise. The great advantage of
digital �ltering over using analogue �lters is that virtually any kind of digital �lter can
be realized. The properties of a �lter are determined completely by its impulse response
and digital �lters can be designed to have any arbitrary impulse response.

There are two main classes of digital �lter; �nite impulse response (FIR) �lters and
in�nite impulse response (IIR) �lters. As shown in Section 1.1 the output of a digital
�lter can be calculated from its input using Equation 1. If the impulse response of the
�lter is in�nite in length the �lter is considered to be an IIR �lter. In this case it is
impractical to calculate the output directly using Equation 1. However, if the impulse

7



response is of �nite length the �lter is a FIR �lter and the output can be calculated
directly. It is common to refer to the values of the impulse response of a FIR �lter as
�lter coeÆcients.

Designing FIR �lters is relatively straightforward. The �rst step is to specify the
required frequency response. A simple and useful example is the ideal low pass �lter
response HD(!) shown in Figure 4. A �lter with this ideal response removes all fre-
quencies above the cut-o� angular frequency !c. Here, the frequency range has been
normalised so that the sampling angular frequency is 2�. Notice also that the frequency
response repeats because of the discrete-time nature of the signals. Given the frequency
response we need to calculate the impulse response so that we can implement the �l-
ter using Equation 1. As has been discussed in Section 1.1 the frequency response, or
transfer function, and the impulse response form a Fourier transform pair. The impulse
response can be calculated by taking the inverse Fourier transform of HD(!). If we do
this we get the result:

hn =
!c
�

sin(n!c)

n!c
; n 6= 0

=
!c
�

n = 0

(7)

where n is an integer and �1 < n < +1. Immediately we see that we have a problem
because an in�nite number of values are required. To produce a practical �lter it is
necessary to use only a `window' of values of hn around n = 0. This is equivalent to
multiplying the impulse response by a rectangular window and the result is that the
frequency response deviates from the ideal low pass response. Rather than multiply
by a rectangular window, other window functions can be used to reduce some of these
problems in the same way that spectra from the FFT can be improved by using a suitable
window function.

It is highly recommended that you do some supplementary reading on digital signal
processing before attempting this worksheet. Search for keywords \Digital Signal Pro-
cessing" or \Digital Filters". Some example titles are listed at the end of the worksheet
(any one of these should contain useful analyses of sampling and �ltering | and there
are many similar texts).

2 Exercises

Week 5, Session 1/2

8



HD(ω)

ω (normalised)0 2π-2π ωc-ωc

Figure 4: Ideal low pass �lter frequency response.

2.1 Sampling

Use Mathcad to simulate sampling of a sine wave of frequency f at a sampling frequency
fs = 100 Hz using the form sin(2�fnT ) where f = 10 Hz and T = 1=fs and plot the
sample values on a graph2. Note that sampled data is best stored in an array of samples,
than as a function of time or sample number; this approach will be needed for the later
exercises. Describe the appearance of the sampled signal as you increase f from zero to
the Nyquist frequency fs=2 and then above the Nyquist frequency. Compare graphs for
frequencies separated by multiples of the sampling frequency ie (f +Nfs) where N is an
integer. Also try some values of negative frequencies in the formula as well as positive
frequencies. At each stage try to justify what you observe by thinking in the frequency
domain.

2.2 Discrete-time Systems

We are going to investigate the properties of a discrete-time system which has the
following �nite impulse response:

h0 = 0:081

h1 = 0:247

h2 = 0:344

h3 = 0:247

h4 = 0:081:

Using equation 1, plot the output of the system for a unit impulse input ie xk = 1 where
k � 4 and all other xk=0. Verify that this is in fact the impulse response given above

2This may sound rather imposing, but all it actually means is plot a sine wave with time-steps of

0.01 seconds. After all, all you do when you plot a function is plot it's value at a few discrete points |

the `curve' you see is because with the standard plot options, the discrete points are joined by a line.

9



shifted in time (remember that Mathcad's arrays run from zero by default.)
Investigate the response of the system to a sampled input sine wave (such as those

produced in the �rst exercise) and changing the frequency of the input between zero
and the Nyquist frequency. Comment on the amplitude and phase-delay response you
observe, plotting the amplitude response as a function of frequency. NB. The extraction
of frequency response can be \automated" by making the input and output as 2D
arrays with dimensions of sample number and frequency index (where the input data is
generated with a frequency taken from an array fi with values covering the range 0{50
Hz). The maximum point on the output waveform for input frequency i can then be
determined using the max() function acting on the ith column of output values. A single
column of a matrix can be addressed by the Superscript operator (p 592), where A<i>

is a vector identical to the ith column of matrix A. To avoid transient e�ects, apply the
max() function to only the latter part of the output for each frequency, making sure
that it is calculated over at least one full cycle of the waveform.

Finally, try a square wave of di�erent frequencies (starting with f < 5Hz) and
comment on what you see, particularly how the shape of the output is di�erent to the
input (think in terms of the frequeny components of the input.) A regular square wave
with period T can be generated using a construction such as:

sq(t) = if(mod(t; T ) < T=2; 1;�1)

Week 6, Session 1

2.3 Using the Fast Fourier Transform

Mathcad includes the built-in functions �t and i�t for performing the Fast Fourier
Transform and inverse Fast Fourier Transform respectively. Note the �t only works if
there are 2n samples.

Use the �t function to analyse a sampled sine wave generated using:

xn = sin(2�fn=fs)

where N is the number of sample points, n is an integer such that 0 � n � N � 1, and
f is the frequency of the sine wave normalised to fs (fs should initially take the value
N , so that the sampled input covers 1 second of data). Since the output �t is complex,
you should look at the modulus of the individual components. Start by using N = 64
and f = 6:0 and comment on what you see. Then try f = 6:1 and comment on what you
see. Try changing the number of data points, N , you use (without changing the sample
frequency, fs, and vice versa, change the sample frequency for the same number of data
points, and comment on what you �nd. Comment on what happens as you slowly change

10



f to 6.1 and up to 7.0? Can you explain why integer values of f are free of spectral
leakage? Caution: when re-using arrays with di�erent data, be sure that a long array
from a previous task does not still contain \old" data | by default the FFT looks at
the whole array it was supplied with, even if you have only re�lled the �rst M elements.

It should be clear by now that there are e�ects which limit the spectral resolution
that can be achieved using a FFT. The �nite resolution limits our ability to resolve
individual spectral components. Look at the FFT spectrum of two sine waves given by:

xn = sin(2�f1n=N) + 0:1 sin(2�f2n=N)

where f1 = 4:1 and f2 = 7 using N = 64 data points. It is very hard to resolve the
smaller sine wave because of spectral leakage from the larger sine wave. So far, we have
been using a rectangular window of width N samples. Now see what happens when you
multiply the data by the Hamming window function using xn = xn _wn The Hamming
window function is given by:

wn = 0:5 + 0:5 cos(
2�(n�N=2)

N
): (8)

Plot the windowed version of xn and comment on the di�erence between this and the
original xn plot. Then perform the �t and comment on the changes you see in the
frequency response and try to explain them. You might also like to try (optionally)
other window functions such as the Blackman window by

wn = 0:42 + 0:5 cos(
2�(n�N=2)

N � 1
) + 0:08 cos(

4�(n�N=2)

N � 1
): (9)

Week 6, Session 2

2.4 Designing a Digital Filter

Use equation 7 to calculate the impulse response for a low pass �nite impulse response
(FIR) �lter with a normalised cut-o� frequency wc = 2�=10. Use a rectangular window
of width 128 points to start with. Arrange the centre of the impulse response hn so
that it is a maximum at n = 64. Look at the amplitude response of the �lter by
using the �t function to calculate the transfer function from the impulse response. The
logarithmic plotting option will allow you to look at the frequency response above the
cut-o� frequency. Try changing the width of the rectangular window (always using 2n

samples) containing the impulse response; initially, simply pad-out a longer window with
zero values, but then increase the number of non-zero values in the impulse response
(re-centering the impulse response in the new window. Comment on what you see. Now
multiply the impulse response by the Hamming window and comment on the changes
you see and try to justify them.

11



2.5 Using a Digital Filter

Finally, add some positive and negative amplitude noise to a sine wave with the rnd
function then use your FIR �lter to reduce the noise. The frequency of the input sine
wave clearly should be below the cut-o� frequency in order to obtain some output. Plot
the noisy input signal and your �ltered output on top of each other and comment on
the results . Use the FFT to analyse the frequency content of the noisy signal before
and after it is �ltered by the FIR �lter.

Suggested reading:
A. Bateman and W. Yates, Digital Signal Processing Design, Pitman, 1988.
M. Bellanger, Digital Processing of Signals, 2nd Ed., John Wiley and Sons, 1988.
J. Dunlop and D.G. Smith, Telecommunications Engineering, 3rd Ed., Chapman and
Hall, 1994.
R.W. Hamming, Digital Filters, 2nd Ed, Prentice-Hall, 1983.
L.B. Jackson, Digital Filters and Signal Processing, Kluwer, 1986.
R. Kuc, Introduction to Digital Signal Processing, McGraw-Hill, 1988.
P.A.Lynn, Introductory Digital Signal Processing with Computer Applications, Wiley,
1989.
A. Peled, Digital Signal Processing: Theory, Design and Implementation, Wiley, 1976.

12


