
Techniques of Physics

Worksheet 5 | Data Analysis

1 Introductory Notes

1.1 Some Statistical De�nitions

For a set of N measurements of a variable represented by xi where i = 0; 1; : : : ; N�1
the mean

�x =
1

N

N�1X
i=0

xi

= hxi (1)

and the variance

�2

x =
1

N

N�1X
i=0

(xi � �x)
2

= hx2i � hxi2 (2)

where �x is the standard deviation. The mean calculated in this way is only an
estimate of the true mean because only a �nite number of measurements is used.
The error on �x is given by:

��x =
�xp
N
: (3)

Again, this is only an estimate of the error on the mean. Dividing by N � 1 in
Equation 3 rather than N improves the estimate by making it unbiased but does
not change the fact that it is an estimate.

For two sets of N measurements represented by xi and yi the covariance

cov[x; y] =
1

N

N�1X
i=0

(xi � �x)(yi � �y)

= hxyi � hxihyi: (4)

The correlation coeÆcient of x and y is given by:

�[x; y] =
cov[x; y]

�x�y
: (5)
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The correlation coeÆcient is a number between �1 and 1 that tells us to what
extent two variables are statistically dependent on each other. If �[x; y] is zero
then x and y are independent i.e. there is no tendency for measurements of x and
y to 
uctuate in sympathy. If the correlation coeÆcient is non-zero then there is
some dependency and in the extreme case, when �[x; y] = �1, the two variables are
completely dependent and values of x and y 
uctuate together.

1.2 Error Calculations with Correlated Variables

This section is for your information and is not required reading for the exercises.

It is often the case that the physical quantity we are interested in is not mea-
sured directly but is calculated from one of more variables that have associated
uncertainties. The problem is then to estimate the error on the quantity of interest
from the errors on the input variables. You may be familiar with how to do this
when the variables are uncorrelated but possibly less familiar with the case when
they are correlated. Having to deal with correlated input variables is quite common.
For example, if the variables were measured from a common data set it is possible
that there is some degree of correlation.

Let us say the quantity of interest is a and is calculated using:

a = f(x; y);

where f is an arbitrary function and x and y are variables with associated errors
�x and �y. In the case when x and y are uncorrelated the square of the error on a
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If we have two correlated variables x and y, the square of the error on a becomes:
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cov[x; y]:

1.3 Histograms and Binning

Measurements always have a characteristic probability distribution. Making a his-
togram is a way of estimating the distribution from a �nite number of measurements.
If the quantity we wish to histogram is x we decide on intervals with endpoints x0,
x1, : : :, xM which de�ne a set of contiguous `bins'. The measurements of x are then
`binned' by counting the number that fall within each of the bins. The result is a
set of M data bin values d0:::M�1. The number of entries in a bin will be random
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and approximately follow a Gaussian with standard deviation
p
d if d is about 10

or larger. If the mean number of entries is smaller than about 10 then the Poisson
distribution is a better description.

1.4 Fitting (Regression)

Measurements of a quantity are often expected to follow a certain distribution.
The form of the distribution is known and described by a function but there are
parameters in the function with values which are not known. In this situation the
data are `�tted' with the function by changing the parameters until the `best' �t is
found. By doing this the parameters are measured.

You have probably used a least squares �t to �t a straight line through a set of
data points in the past. This is one example of the chi-squared �tting method. In a
chi-squared �t the measurements are �rst binned to give a set of M values d0:::M�1
which estimate the distribution. A function is then �tted to the data by minimising
the sum of the squared di�erences between each of the bin values and the expected
value predicted by the function. To take account of possible di�erences in the error
on the bin values each `di�erence squared' term is divided by the error squared.
The chi-squared can therefore be written as:

�2 =
M�1X
j=0

(dj � fj(�; �; : : :))
2

�2
dj

(6)

where dj are the data bin values, �dj are their errors and fj(�; �; : : :) are the pre-
dicted values calculated from the function. The function depends on the parameters
�; �; : : : and it is these parameters that are adjusted to minimise �2. For a straight
line �t this can be done analytically but in general it is necessary to iterate until
the chi-squared is minimised.

Once the best values of the parameters have been found it is possible to make a
quantitative evaluation of how good the �t is from the minimum chi-squared value.
If the predicted values are compatible with the data values you should �nd that

�2 � Ndf = M �Nc

where Ndf is the number of degrees of freedom given by the number of data values,
M, minus the number of constraints, Nc. Every parameter that is varied to minimise
the chi-squared constitutes a constraint and there may be others such as the sum
of data values being constrained to a certain value. It is customary to convert the
chi-squared into the chi-squared per degree of freedom by dividing the minimum
chi-squared by the number of degrees of freedom. The minimum chi-squared will
vary a lot from experiment to experiment but the chi-squared per degree of freedom
should always be close to one if there are many degrees of freedom. Note that the an
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excellent way of quickly determining if a �t has worked is to plot the data with error
bars and the �tted function and compare by eye! The errors on the �t parameters
are determined by �nding the change in each of the parameters that causes the
chi-squared to increase by 1. This is done in turn for each parameter while the
other parameters are �xed at their �tted value.

The maximum likelihood method is another way of performing a �t. The proba-
bility, or likelihood, of making a single measurement x is proportional to f(x) where
f(x) describes the data probability distribution. Hence, the probability of making
the set of measurements x0:::N�1 is proportional to

l = f(x1)f(x2)f(x3) : : : f(xN�2)f(xN�1) (7)

If f(x) accurately describes the data distribution then we expect l to be larger than
when it does not accurately describe the distribution. This means we can �nd the
best values of the parameters which determine the shape of f(x) by maximising l.

The N multiplications in Equation 7 can lead to very large or very small numbers
so it is easier to maximise the log likelihood

L(�; �; : : :) =
N�1X
i=0

ln(f(xi;�; �; : : :)) (8)

where we have dropped any constant terms which come from constant multiplicative
factors. The errors on the �tted parameters are found in a similar way to the
chi-squared method by �nding the change in the parameter that causes the log
likelihood to decrease by 0:5.

The maximum likelihood method has a number of advantages over the chi-
squared method. The data does not have to be binned so there is no loss of
information and no assumptions have to be made about the size of errors. The
di�erence becomes most important when statistics are low because large bins have
to be used to ensure that each bin has a reasonable number of entries. Another
advantage becomes clear if you consider what would happen if there was some (per-
haps experimental) e�ect that depends on x and modi�es the data distribution.
The distribution becomes A(x)f(x) where A(x) describes the x dependent e�ect.
In the chi-squared method we would need to know A(x) to perform the �t but in
the maximum likelihood method the likelihood is simply multiplied by a constant
factor A(x1)A(x2) : : :A(xN�1) and the position of the maximum is not a�ected.
The main advantage the chi-squared method over the maximum likelihood method
is that it provides a quantitative measure of the goodness of �t.
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2 Exercises

Week 7, Session 1

2.1 One Random Variable

Generate a set of random values according to a normal distribution with mean 0 and
variance 1 using Mathcad's rnorm function. Calculate the mean and variance of the

data using the formulae given above. Try selecting the equation that generates the
random data and use the function key F9 to repeatedly generate new data to see
how the estimated mean and variance 
uctuate. You can use this technique at any
time to get a feel for how the numbers and distributions change when you analyse
a di�erent data set.

Find out how to use the hist function to make a histogram. Use hist to histogram
the data so that you can see how they are distributed. Make it is easy to change the
number of bins, the value of the lower edge of the �rst bin and upper edge of the
last bin. This will then make a useful template for later in the exercises when you
will need to repeat this process. Start by using the `bar' or `point' plotting option
and make sure the bars or points are plotted at the centre of the bins. Experiment
with the size of the bins and choose an appropriate bin width for the number of
values you are generating. Find out how to plot error bars in Mathcad. The error
on the number of entries in a bin is approximately �pn where n is the number of
entries. Plot error bars on your histogram.

Calculate the error on the mean and check your error using a Monte Carlo ap-

proach. The way to do this is to simulate doing a large number of `experiments'
where each experiment involves generating a �xed number of data values and calcu-
lating the mean. The error on the mean is just the standard deviation of the mean.
You will need to create a large array and calculate the mean for sub-sections of it.
Make a histogram of the mean so that you can see its distribution.

Try changing to data generated according to a 
at distribution with mean 0 and
variance 1. The Mathcad expression rnd(

p
12)�p12=2 returns a random number

that �ts this speci�cation. Look for any signi�cant changes in the quantities you
have calculated and pay particular attention to the error on the mean and the
distribution of the mean. Comment on what does or does not change.

5



Week 7, Session 2

2.2 Two Correlated Random Variables

Mathcad does not have a built-in mechanism for generating random numbers with
a certain correlation, so we will have to do it ourselves. The standard method
is to generate two uncorrelated random values and then make orthogonal linear
combinations to give two random values with the required degree of correlation.
If a and b are uncorrelated random variables with mean 0 and variance 1 then
correlated random variables x and y with mean 0 and variance 1 can be calculated
using:

x =
1p
2

�
(
q
1 + �)a+ (

q
1� �)b

�
(9)

y =
1p
2

�
(
q
1 + �)a� (

q
1� �)b

�
(10)

where � is the required correlation coeÆcient.
Use Equations 9 and 10 to generate two sets of correlated random variables

with the normal distribution. Make an XY scatter plot of the data and describe

what happens as you vary � between �1 and +1. Finally, calculate the correlation

coeÆcient from the data and see how it compares with the expected value.

2.3 The Chi-Squared Distribution

It is instructive to investigate the shape of the chi-squared distribution for various
numbers of degrees of freedom. This will give a feel for the answers we might
expect when trying to �t data. Unfortunately, the chi-squared distribution is a
rather complex function. However, any good mathematical package should have
functions such as this de�ned, and Mathcad is no exception. This function is very
easy to use: dchisq(x; d) gives the probability distribution for a chi-squared with d
degrees of freedom.

Try plotting dchisq for values of the number of degrees of freedom between 1
and 10, and note down the general features of these distributions (eg mean and
distribution). It probably easier to see what is going on if we plot the distribution
of chi-squared per degree of freedom. To use the dchisq function to plot this, you
will need to plot:

d� dchisq(d� x; d)

the initial d being there to preserve a normalisation of 1 under the curve. Try
plotting this for values of d of 3, 5, 10, 30 and 100. This should give you a better
idea how the expected chi-squared value will vary when you increase the number
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of degrees of freedom | note down what you observe. Use this plot to say how

you would interpret a value of 1.5 for an observed chi-squared per degree of freedom

when �tting data in each of the cases d = 3, 5, 10, 30 and 100.

Note that although you have been looking at the distribution of the actual
chi-squared values, often we refer to the chi-squared probability distribution as the
probability (for a certain degree of freedom) that the chi-squared value will lie below
a de�nite value, x. This is given by the integral from zero to x of the distributions
you have been using.

Week 8, Session 1,2

2.4 Chi-Squared Fitting

In this exercise we are going to �t data with an exponential curve, as would be
required in a nuclear decay experiment, for example. However, before we can start
to do some �tting we need to generate some data to play with.

The standard version of Mathcad does not include a random number generator
for an exponential so we will have to do it ourselves. The need to generate random
numbers according to a speci�c distribution is very common when doing Monte
Carlo work so it is worth demonstrating the general technique. The idea is to
generate a random number between 0 and 1 from a 
at distribution and transform
this into a number from the required distribution. We can �nd the expression that
does this by equating the probability of getting a value less than or equal to r from
a 
at distribution with the probability of getting a value less than or equal to R
from the distribution of interest i.e.

Z r

0

dx =
Z R

0

f(x)dx

r =
Z R

0

f(x)dx (11)

where f(x) is the normalised function which describes the distribution we want. If
we do the integration and solve for R in terms of r we end up with an expression
which performs the required transformation.

Find the expression that transforms a value from a 
at distribution into a value
from the normalised exponential:

nexp(t) =
1

T
exp(�t=T ) (12)

where T is the parameter that determines the shape of the distribution (this would
be the lifetime in a decay experiment). Use this to generate N = 1000 values
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according to an exponential with T = 2. Histogram the data using 10 bins over the
range 0 < t < 10.

De�ne a function that calculates the chi-squared for an exponential �t to the
data with the normalisation of the exponential, A, and T as parameters. You can
assume that the error on a bin is the square root of the number of entries. With
A �xed at (N� bin width), make a plot of the chi-squared as a function of T .
Concentrate on the minimum and describe what happens as you repeatedly generate

new data using the F9 function key. (Using global assignments will allow you to
move the data generating expression next to the plot.) Now increase the value of N
and comment on the changes you see. Also try decreasing the number of bins and

see how this a�ects the chi-squared.

Now make a contour plot of the chi-squared as you vary both T and A. Finding
the minimum in the chi-squared by eye is clearly a tedious thing to do if there is
more than one parameter. We obviously want the computer to do the hard work
here. Mathcad has a variety of built-in �tting functions but they are useless for
serious �tting work because there is no way to specify the errors on the data and
consequently no way for Mathcad to return the error on the �tted parameters. How-
ever, there is a way we can get Mathcad to automate the �tting process. Mathcad
has a function called Minerr that solves equations using an iterative technique and
will return the best solution it can �nd even if there is no exact solution. We can
use Minerr to �nd the best parameter values by asking it to solve the equation
�2(A; T ) = 0. Use Minerr in this way and use it to �t for A and T . Make a plot
of the data with error bars and the �tted function to check your �t looks good.
We can also use Minerr to get the error on a �tted parameter by asking it to �nd
the value of the parameter that gives a chi-squared larger than the minimum by 1.
Estimate the error on A and T using this approach.

2.5 Log Likelihood Fitting (Optional)

De�ne a function that calculates the log likelihood for an exponential �t to the
data with T as a parameter. Make a plot of the log likelihood as T is varied. Again
concentrate on the maximum and try regenerating the data to see what happens.
Do a maximum likelihood �t for T usingMinerr. Note that you will have to choose a
value of the log likelihood safely above the maximum but not too far above because
Minerr may have problems. Use Minerr to �nd the error on T .

Think about the pros and cons of using the chi-squared �t and maximum likeli-
hood �t in this case, and try to �nd ways that either �t might be improved. Finally,
which �tting method would you choose to use if there was only a fairly small number
of data?
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